• Title/Summary/Keyword: parameter sensitivity

Search Result 1,005, Processing Time 0.024 seconds

Characteristic Analysis of Inductive Power Transfer System for PRT (소형궤도 열차용 유도 전력 전송 시스템 특성해석)

  • Min, Byung-Hun;Lee, Byung-Song
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.35-43
    • /
    • 2007
  • In this paper, the inductive power collector using electromagnetic induction for vehicle such as the PRT(Personal Rapid Transit) system is suggested and son ideas for power collector design to improve tile power transfer performance are presented. And also, the analysis of the inductive power transfer system in conjunction with series resonant converter operating variable high frequency is shown. Of particular interest is the sensitivity of the complete system to variations in operational frequency and parameters. In inductive power transfer system electrical power is transferred from a primary winding in the form of a coil or tract to one or more isolated pick-up coils that my relative to the primary. The ability to transmit power without contact enables high reliability and easy maintenance that allows inductive power transfer system to be implemented in hostile environments. This technology has found application in many fields such as electric vehicles, PRT(Personal Rapid Transit) etc. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, we will show you various characteristic of inductive power transfer system as double layer construction of secondary winding, which was divided in half to increase both output current and output voltage, a model of power collector and parallel winding structure, a model of concentration/ decentralization winding and the effects of parameter and operational frequency variation.

Multi-strategy structural damage detection based on included angle of vectors and sparse regularization

  • Liu, Huanlin;Yu, Ling;Luo, Ziwei;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.415-424
    • /
    • 2020
  • Recently, many structural damage detection (SDD) methods have been proposed to monitor the safety of structures. As an important modal parameter, mode shape has been widely used in SDD, and the difference of vectors was adopted based on sensitivity analysis and mode shapes in the existing studies. However, amplitudes of mode shapes in different measured points are relative values. Therefore, the difference of mode shapes will be influenced by their amplitudes, and the SDD results may be inaccurate. Focus on this deficiency, a multi-strategy SDD method is proposed based on the included angle of vectors and sparse regularization in this study. Firstly, inspired by modal assurance criterion (MAC), a relationship between mode shapes and changes in damage coefficients is established based on the included angle of vectors. Then, frequencies are introduced for multi-strategy SDD by a weighted coefficient. Meanwhile, sparse regularization is applied to improve the ill-posedness of the SDD problem. As a result, a novel convex optimization problem is proposed for effective SDD. To evaluate the effectiveness of the proposed method, numerical simulations in a planar truss and experimental studies in a six-story aluminum alloy frame in laboratory are conducted. The identified results indicate that the proposed method can effectively reduce the influence of noises, and it has good ability in locating structural damages and quantifying damage degrees.

Use of n Mathematical Model to Assess the Effects of Dissolved Organic Phosphorus on Species Competition Among the Dinoflagellates Alexandrium tamarense and Gymnodinium catenatum and the Diatom Skeletonema costatum (수치모델을 이용한 와편모조류 Alexandrium tamarense, Gymnodinium catenatum 및 규조류 Skeletonema costatum의 종간 경쟁에 미치는 용존태 유기인의 영향)

  • Oh, Seok-Jin;Yang, Han-Soeb;Yamamoto, Tamiji
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • Species competition among the toxic dinoflagellates Alexandrium tamarense and Gymnodinium catenatum and the diatom Skeletonema costatum was simulated using a mathematical model. Prior to the model simulation competition experiments using the three species were conducted to obtain data for validation by the simulation model. S. costatum dominated at a density of ${\sim}10^{4}\;cells/mL$ compared to the other species in the medium with dissolved inorganic phosphorus (DIP). The growth of S. costatum was also stimulated by the addition of dissolved organic phosphorus (DOP), such as uridine-5-monophosphate (UMP) or glycerophosphate (Glycero-P), although this species is unable to take up DOP. This implies that the growth of S. costatum may be supported by DIP, which is hydrolyzed by alkaline phosphatase produced from A. tamarense and G. catenatum. The species competition model was run assuming the environmental conditions of northern Hiroshima Bay, Japan, during spring and summer. G. catenatum increased in cell density and neared the level of S. costatum at the end of the calculation. In the sensitivity analyses by means of doubling and halving parameters, depleted DIP had little effect on the cell density of G. catenatum. However the growth of A. tamarense and S. costatum was significantly affected by changes in the parameter values. These results indicate that if DIP depletion is ongoing, species that have a large phosphate pool in their cells, such as G. catenatum, will predominate in the community.

A Study on the Optimum Design of SUV Rear Spoiler (SUV 차량 리어 스포일러 최적 형상에 관한 연구)

  • Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.689-694
    • /
    • 2018
  • Recently, fuel consumption efficiency has become the most important issue in the vehicle development process due to the problem of environmental pollution. The air flow patterns of the vehicle body line and rear part are the most important elements affecting the fuel consumption efficiency. Especially, the airflow pattern of the vehicle rear part is the most important design factor to be considered in rear spoiler design. In this paper, the control factors affecting the airflow of the rear spoiler are determined, the airflow sensitivity of these control factors are tested and, then, the optimized control factors to reduce the airflow drag force are proposed. The model of optimized control factors is tested and the values of the optimized control factors are changed by analyzing the S/N ratio and mean value. Finally, the new modified model incorporating the optimized control factors is tested in an air flow tunnel and its ability to decrease the air drag and reduce the cost is verified.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

Combined Treatment with 2-Deoxy-D-Glucose and Doxorubicin Enhances the in Vitro Efficiency of Breast Cancer Radiotherapy

  • Islamian, Jalil Pirayesh;Aghaee, Fahimeh;Farajollahi, Alireza;Baradaran, Behzad;Fazel, Mona
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8431-8438
    • /
    • 2016
  • Doxorubicin (DOX) was introduced as an effective chemotherapeutic for a wide range of cancers but with some severe side effects especially on myocardia. 2-Deoxy-D-glucose (2DG) enhances the damage caused by chemotherapeutics and ionizing radiation (IR) selectively in cancer cells. We have studied the effects of $1{\mu}M$ DOX and $500{\mu}M$ 2DG on radiation induced cell death, apoptosis and also on the expression levels of p53 and PTEN genes in T47D and SKBR3 breast cancer cells irradiated with 100, 150 and 200 cGy x-rays. DOX and 2DG treatments resulted in altered radiation-induced expression levels of p53 and PTEN genes in T47D as well as SKBR3 cells. In addition, the combination along with IR decreased the viability of both cell lines. The radiobiological parameter (D0) of T47D cells treated with 2DG/DOX and IR was 140 cGy compared to 160 cGy obtained with IR alone. The same parameters for SKBR3 cell lines were calculated as 120 and 140 cGy, respectively. The sensitivity enhancement ratios (SERs) for the combined chemo-radiotherapy on T47D and SKBR3 cell lines were 1.14 and 1.16, respectively. According to the obtained results, the combination treatment may use as an effective targeted treatment of breast cancer either by reducing the single modality treatment side effects.

Development of Regression Model to evaluate the indirect costs of Life-Cycle Costs (생애주기비용의 간접비용 산출을 위한 Regression Model의 개발)

  • 조효남;이종순;김충완;박경훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.150-156
    • /
    • 2004
  • Though the concept of Life-Cycle Cost (LCC) itself is not new, its effectiveness for planning, design, rehabilitation and maintenance/management of civil infrastructures is becoming increasingly recognized. For the decision problems as in the case of the LCC of plant facilities, equipments, bridge decks, pavements, etc., the Life-Cycle Cost Analysis (LCCA) is relatively simple, and thus its practical implementation is rather straightforward. However, when it comes to major infrastructures such as bridge, tunnels, underground facilities, etc., the LCCA problem becomes extremely complex because lack of cost data associated with various direct and indirect losses, and the absence of uncertainty data available for the assessment as well. As a result, the LCC studies have been largely limited only to those relatively simple LCCA problems of planning or conceptual design for making decisions. Accordingly, in the recent years, the researchers have pursued extensive studies on the LCC effectiveness mostly related to LCC models and frameworks for civil infrastructures. Moreover, recently the demand on the practical application of LCC effective decisions in design and maintenance is rapidly growing unprecedently in civil engineering practice. Indirction cost is very important on LCC formulation. But that is very difficult and complicate the estimation every LCC. The objective of this paper is to suggest efficient regression model for the estimation of indirect cost approach to the practical application of LCC for the design and rehabilitation of civil. infrastructures considering traffic, traffic network, detour condition, and workzone condition. In this paper, it performed the sensitivity analysis and correlation analysis of parameter for development of regression model of inflection cost.

  • PDF

Calibration of QUAL2E Reaction Coefficients by the Influence Coefficient Algorithm (영향계수(影響係數)를 이용한 QUAL2E 모형의 반응계수(反應係數) 추정(推定))

  • Jun, Kyung Soo;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.163-176
    • /
    • 1993
  • A methodology based on the influence coefficient algorithm was established for the optimal calibration of QUAL2E reaction coefficients. It was applied to the stream sections from the Chungju Dam to the downstream end of the South Han River. A water budget analysis using the monthly records of reservoir inflows and outflows in 1990 was made to determine tributary inflows. Estimated tributary inflows were used, together with the monthly records of water quality measurements in 1990, for the calibration of reaction coefficients. Simulated quality constituents were chl.a. nitrogen cycles, phosphorus cycles. BOD and DO. A sensitivity analysis was made to determine significant reaction coefficients, and as a result 11 reaction coefficients were selected as calibration parameters. The influence coefficient algorithm applied to the calibration of QUAL2E reaction coefficients proved to be a useful one yielding a rapid convergence. Each calibration parameter converged to an optimum value within 3 iterations.

  • PDF

Computational study of the hemodynamics of the patients after the Fontan procedure (Fontan 시술 이후 환자의 혈류역학적 상태에 대한 수치적 연구)

  • Shim, Eun-Bo;Ko, Hyung-Jong;Kim, Kyung-Hoon;Kamm, Roger D.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.371-376
    • /
    • 2000
  • In this study, the computational method is presented to simulate the hemodynamics of the patients after the Fontan procedure. The short-term feedback control models are implemented to assess the hemodynamic responses of the patients exposed to the stresses such as gravitational effect or hemorrhage. To construct the base line of the Fontan model, we assume an increase in venous tone, in heart rates, and in systemic resistance that are based on the clinical observations. For the verification of the present method we simulate the LBNP (lower body negative pressure) test for the normal and the Fontan model and we compare these with experimental data. Computational results show that the diastolic ABP(arterial blood pressure) increases but the systolic ABP decreases during LBNP. The increase in heart rate is due to the control system activated by the decreased mean ABP and CVP(central venous pressure). In case of the Fontan model, the increased venous tone is the reason of the diminished CVP change during LBNP. We also simulate 20% hemorrhage stress to the patient after the Fontan procedure and these results are compared with the experimental and the existing computational one. Computational results on the hemodynamics of patients after the Fontan procedure show that the mean ABP and cardiac output decrease. Heart rate and systemic resistance increase to compensate for the decrease in ABP. The sensitivity analysis according to the conduit resistance is also presented to delineate the effects of the local blood flow resistance. The cardiac output decreases according to the increase of the conduit resistance. The 50% increase in the conduit resistance causes about 3% decrease of cardiac output.

  • PDF

A Study on the Corrosion Susceptibility and Corrosion Fatigue Characteristics on the Material of Turbine Blade (Turbine Blade재료의 부식민감성과 부식피로특성에 관한 연구)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Ryu, Seung-U;Kim, Hyo-Jin;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.603-612
    • /
    • 2000
  • Corrosion characteristics on the 12Cr alloy steel of turbine blade was electro-chemically investigated in 3.5wt% NaCI and 12.7wt% Na2S04 solution, respectively. Electro-chemical polarization test, Huey test and Oxalic acid etching test were previously conducted to estimate corrosion susceptibility of the material. And, using the horizontal corrosion fatigue tester, corrosion fatigue characteristics of 12Cr alloy steel in distilled water, 3.5wt% NaCI solution, and 12.7wt%(1M) Na2S04 solution were also fracture-mechanically estimated and compared their results. Parameter considered was room temperature, 60'C and 90'C. Corrosion fatigue crack length was measured by DC potential difference method.Obtained results are as follows,1) 12Cr alloy steel showed high corrosion rate in 3.5wt% NaCI solution and Na2S04 solution at high tempratue.2) Intergranular corrosion sensitivity of 12 Cr alloy was smaller than austenitic stainless steel.3) Corrosion fatigue crack growth rate in 3.5wt% NaCI and 12.7wt%(IM) Na2S04 solution is entirely higher than in the distilled water, and also increased with the temperature increase.