Processing math: 100%
  • 제목/요약/키워드: parameter fluctuation

Search Result 151, Processing Time 0.025 seconds

Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 호감도 함수를 통한 다중반응표면 최적화)

  • Kwon Jun-Bum;Lee Jong-Seok;Lee Sang-Ho;Jun Chi-Hyuck;Kim Kwang-Jae
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.95-104
    • /
    • 2005
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation which may amplify the variance of response. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameter setting, a new desirability function is proposed by considering POE as well as distance-to-target of response and response variance. The proposed method is illustrated using a rubber product case in Ribeiro et al. (2000).

Multiresponse Optimization through a Loss Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 손실함수를 통한 다중반응표면 최적화)

  • Kwon, Jun-Bum;Lee, Jong-Seok;Lee, Sang-Ho;Jun, Chi-Hyuck;Kim, Kwang-Jae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.2
    • /
    • pp.164-172
    • /
    • 2005
  • A loss function approach to a multiresponse problem is considered, when process parameters are regarded as random variables. The variation of each response may be amplified through so called propagation of error (POE), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. The forms of POE for each response and for a pair of responses are proposed and they are reflected in our loss function approach to determine the optimal condition. The proposed method is illustrated using a polymer case. The result is compared with the case where parameter fluctuation is not considered.

A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification

  • Ahmad Ghaderi;Tsuyoshi Hanamoto;Teruo Tsuji
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.235-244
    • /
    • 2006
  • Recently, speed sensorless vector control for synchronous reluctance motors (SYRMs) has deserved attention because of its advantages. Although rotor angle calculation using flux estimation is a straightforward approach, the DC offset can cause an increasing pure integrator error in this estimator. In addition, this method is affected by parameter fluctuation. In this paper, to control the motor at the low speed region, a modified programmable cascaded low pass filter (MPCPLF) with sensorless online parameter identification based on a block pulse function is proposed. The use of the MPCLPF is suggested because in programmable, cascade low pass filters (PCLPF), which previously have been applied to induction motors, the drift increases vastly wl)en motor speed decreases. Parameter identification is also used because it does not depend on estimation accuracy and can solve parameter fluctuation effects. Thus, sensorless speed control in the low speed region is possible. The experimental system includes a PC-based control with real time Linux and an ALTERA Complex Programmable Logic Device (CPLD), to acquire data from sensors and to send commands to the system. The experimental results show the proposed method performs well, speed and angle estimation are correct. Also, parameter identification and sensorless vector control are achieved at low speed, as well as, as at high speed.

Analysis and Remedy of TFT Based Current Mode Logic Circuit Performance Degradation due to Device Parameter Fluctuation

  • Lee, Joon-Chang;Jeong, Ju-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.535-538
    • /
    • 2005
  • We report the influence of the threshold voltage and mobility fluctuation in TFT on current mode digital circuit performance. We found that the threshold voltage showed more serious circuit malfunction. We studied new circuit configuration for improvement.

  • PDF

Flicker Reduction Algorithm using Gamma Correction Parameter (감마보정 요소를 이용한 동영상 플리커 제거 알고리즘)

  • Choi, Heon-Hoi;Lee, Im-Geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.397-400
    • /
    • 2010
  • The changing light condition of scene cause the luminance fluctuation of the captured image sequences. this artifact is called flicker, and would be easily recognized as visually unstable fluctuation. As the flicker degrades the performance of extracting useful information from image sequences, such as motion information or segmentation, it should be correction and linear flicker model. The algorithm model the flicker effects as a linear system with gain and offset parameter and estimates gain parameter with Gamma correction. The flicker reduction is performed by applying these parameters inversely th the ordinal sequences. To show the performance, we test out algorithm th the ground-truth sequences with the artificially added luminance fluctuation and real sequence with object motion.

  • PDF

Nonclassical Chemical Kinetics for Description of Chemical Fluctuation in a Dynamically Heterogeneous Biological System

  • Lim, Yu-Rim;Park, Seong-Jun;Lee, Sang-Youb;Sung, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.963-970
    • /
    • 2012
  • We review novel chemical kinetics proposed for quantitative description of fluctuations in reaction times and in the number of product molecules in a heterogeneous biological system, and discuss quantitative interpretation of randomness parameter data in enzymatic turnover times of β-galactosidase. We discuss generalization of renewal theory for description of chemical fluctuation in product level in a multistep biopolymer reaction occurring in a dynamically heterogeneous environment. New stochastic simulation results are presented for the chemical fluctuation of a dynamically heterogeneous reaction system, which clearly show the effects of the initial state distribution on the chemical fluctuation. Our stochastic simulation results are found to be in good agreement with predictions of the analytic results obtained from the generalized master equation.

Control of Pump Performance with Attaching Flaps on Blade Trailing Edges

  • Kanemori, Yuji;Pan, Ying Kang
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.109-120
    • /
    • 2008
  • An innovative method of changing a centrifugal low specific speed pump performance and pressure fluctuation by applying outlet flaps to impeller exit has been investigated. The outlet blade edge section corresponds to the trailing edge of wing on the circular-cascade, which dominates the pump performance and pressure fluctuation. Computational fluid dynamics (CFD) analysis of the entire impeller and volute casing and an experimental investigation are conducted. The pressure fluctuation and the vibration of the shaft are measured simultaneously. Kurtosis is applied as a dimensionless parameter with which the unevenness of velocity distribution at impeller outlet is indicated. The influence of the flaps on the pressure fluctuation is explained by the kurtosis. This paper presents a theoretical method of predicting the pump performance related to the attachment of a flap at impeller outlet.

An Analysis of Crack Growth Rate Due to Variation of Fatigue Crack Growth Resistance (피로균열전파저항의 변동성에 의한 균열전파율의 해석)

  • Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1139-1146
    • /
    • 1999
  • Reliability analysis of structures based on fracture mechanics requires knowledge on statistical characteristics of the parameter C and m in the fatigue crack growth law, da/dN=C(ΔK)m. The purpose of the present study is to investigate if it is possible to predict fatigue crack growth rate by only the fluctuation of the parameter C. In this study, Paris-Erdogan law is adopted, where the author treat the parameter C as random and m as constant. The fluctuation of crack growth rate is assumed only due to the parameter C. The growth resistance coefficient of material to fatigue crack growth (Z=1/C) was treated as a spatial stochastic process, which varies randomly on the crack path. The theoretical crack growth rates at various stress intensity factor range are discussed. Constant ΔK fatigue crack growth tests were performed on the structural steel, SM45C. The experimental data were analyzed to determine the autocorrelation function and Weibull distributions of the fatigue crack growth resistance. And also, the effect of the parameter m of Paris' law due to variation of fatigue crack growth resistance was discussed.

Sensitivity Analysis of Hydrogeologic Parameters by Groundwater Table Fluctuation Model in Jeju Island (지하수위 변동 해석모델을 이용한 제주지역의 수리지질 매개변수 민감도 분석)

  • Kim, Nam Won;Kim, Youn Jung;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1409-1420
    • /
    • 2014
  • In this work, we have carried out a sensitivity analysis of hydrogeologic parameters such as reaction factor and drainable pore space in groundwater table fluctuation model and have found characteristics of parameter distribution according to the altitude. We found that drainable pore space which is hydrogeologic parameter of aquifer didn't show any trend with altitude while reaction factor which is groundwater flow characteristic showed clear trend with altitude. To find a sensitivity of parameters, we compared RMSE of estimated groundwater recharges by using the mean value and linear relationship of parameters. As results, the linear equation derived for entire watersheds could be applied to estimate parameters for ungauged watershed. Furthermore, the features of parameter distribution can be used to predict hydrogeologic parameter in ungauged watersheds and it is expected that those features could be used for a basic data for groundwater modeling.

Double DOF control of an electromechanical integrated toroidal drive

  • Xu, Lizhong;Liu, Xin
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.115-131
    • /
    • 2007
  • The electromechanical integrated toroidal drive is a new drive system. For the control of the drive, the torque fluctuation and the steady-state errors should be removed and the fast response to the input change should be achieved. In this paper, the torque fluctuation of the drive system is analyzed and expressed as Fourier series forms. The transfer function of the torque control for the drive system is derived from its electromechanical coupled dynamic equations. A 2-DOF control method is used to control the drive system. Using definite parameter relationship of the 2-DOF control system, the steady errors of the torque control for the drive system is removed. Influences of the drive parameters on the control system are investigated. Using proper drive parameters, the response time of the control system is reduced and the quick torque response of the drive system is realized. Using a compensated input voltage, the torque fluctuation of the drive system is removed as well. The compensated input voltage can be obtained from the torque fluctuation equation and the transfer function. These research results are useful for designing control system of the new drive.