• 제목/요약/키워드: parameter evaluation simulation

검색결과 209건 처리시간 0.028초

Simulation Input Modeling : Sample Size Determination for Parameter Estimation of Probability Distributions (시뮬레이션 입력 모형화 : 확률분포 모수 추정을 위한 표본크기 결정)

  • Park Sung-Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • 제31권1호
    • /
    • pp.15-24
    • /
    • 2006
  • In simulation input modeling, it is important to identify a probability distribution to represent the input process of interest. In this paper, an appropriate sample size is determined for parameter estimation associated with some typical probability distributions frequently encountered in simulation input modeling. For this purpose, a statistical measure is proposed to evaluate the effect of sample size on the precision as well as the accuracy related to the parameter estimation, square rooted mean square error to parameter ratio. Based on this evaluation measure, this sample size effect can be not only analyzed dimensionlessly against parameter's unit but also scaled regardless of parameter's magnitude. In the Monte Carlo simulation experiments, three continuous and one discrete probability distributions are investigated such as ; 1) exponential ; 2) gamma ; 3) normal ; and 4) poisson. The parameter's magnitudes tested are designed in order to represent distinct skewness respectively. Results show that ; 1) the evaluation measure drastically improves until the sample size approaches around 200 ; 2) up to the sample size about 400, the improvement continues but becomes ineffective ; and 3) plots of the evaluation measure have a similar plateau pattern beyond the sample size of 400. A case study with real datasets presents for verifying the experimental results.

A Study on Domestic Standard Parameter Setting for BIM-based Energy Performance Evaluation - Focused on Possession Area per Person of Occupants in Government Offices - (BIM 기반 에너지성능평가를 위한 국내 표준 매개변수 설정 방안에 대한 연구 - 공공청사 업무시설의 재실자 1인당 점유면적을 중심으로 -)

  • Lee, Yun-Jeong;Lee, Kweon-Hyoung;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • 제20권1호
    • /
    • pp.11-21
    • /
    • 2015
  • Currently, the United States, the United Kingdom, Australia etc. are actively utilizing energy simulation for efficiency evaluation of building energy. However, domestic energy efficiency assessment system doesn't use energy simulation system properly at present: parameters based architecture plans and Ashrae Standard are inputted for the evaluation, because the input parameters for the simulation haven't been established yet. This fact causes poor reliability during energy simulation, as the values of the two standards are different from each other. Therefore, the aim of the study is to set domestic standard parameter for BIM-based energy performance evaluation, focusing on possession area per person of occupants at government office in Korea. We found that the difference among the result values occurred approximately 3% in the energy simulation. As a result of the analysis, possession area per person of occupants in Government office is $31.87m^2$. Other input parameters may be set based on this. This will increase the reliability of energy simulation through a domestic standard parameter.

The Evaluation of Partially Degraded Material Using Nonlinear Propagation Characteristics of Ultrasonic Wave (초음파 비선형 전파특성을 이용한 부분 열화 재료의 평가)

  • Kim, Kyung-Cho;Jhang, Kyung-Young;Hisashi, Yamawaki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제25권2호
    • /
    • pp.214-219
    • /
    • 2001
  • In this paper, the nonlinear behavior of ultrasonic wave in partially degraded material is considered. For this aim, FDM(finite difference method) model for the nonlinear wave equation was developed with the restriction to the 1-D longitudinal wave motion and how the partial degradation in material contributes to the detected nonlinear parameter was analyzed quantitatively. In order to verify the rightness of this simulation method, the relation between the detected nonlinear parameter and the continuous distribution of degradation obtained from simulation was compared with experiment results and the simulation and experiment results showed similar tendency. It can be known from simulation result that the degree of degradation, the range of degradation and the continuous distribution of degradation have strong correlation with the detected nonlinear parameter. As it was possible in these simulations that only special part is assumed as degraded one, the quantitative evaluation of partially degraded material may be obtained by using this method.

Structural identification based on incomplete measurements with iterative Kalman filter

  • Ding, Yong;Guo, Lina
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1037-1054
    • /
    • 2016
  • Structural parameter evaluation and external force estimation are two important parts of structural health monitoring. But the structural parameter identification with limited input information is still a challenging problem. A new simultaneous identification method in time domain is proposed in this study to identify the structural parameters and evaluate the external force. Each sampling point in the time history of external force is taken as the unknowns in force evaluation. To reduce the number of unknowns for force evaluation the time domain measurements are divided into several windows. In each time window the structural excitation is decomposed by orthogonal polynomials. The time-variant excitation can be represented approximately by the linear combination of these orthogonal bases. Structural parameters and the coefficients of decomposition are added to the state variable to be identified. The extended Kalman filter (EKF) is augmented and selected as the mathematical tool for the implementation of state variable evaluation. The proposed method is validated numerically with simulation studies of a time-invariant linear structure, a hysteretic nonlinear structure and a time-variant linear shear frame, respectively. Results from the simulation studies indicate that the proposed method is capable of identifying the dynamic load and structural parameters fairly accurately. This method could also identify the time-variant and nonlinear structural parameter even with contaminated incomplete measurement.

A Study on Robustness Analysis Model for Calculating Line Capacity in Railroad System (철도선로용량 계산을 위한 강인성 분석모형에 관한 연구)

  • Lee, Chang-Ho;Kim, Bong-Sun;Kim, Hak-Sik;Lee, Byung-Kwon;Kim, Dong-Hee;Hong, Sun-Hm
    • IE interfaces
    • /
    • 제16권spc호
    • /
    • pp.111-115
    • /
    • 2003
  • Railroad system is consisted of resources of rail track, signal system, and vehicles. Railway operation must use these limited resources and maximize resource utilization. Line capacity(number of trains throughput/day) is determined by such as parameters, line utilization rate($\alpha$), dummy rate for the break-through hour($\beta$), and dummy rate for the number of rail track intervals($\delta$). Line capacity simulation(LCS) determined the line capacity through simulation given $\alpha$, $\beta$, and $\delta$. This paper deals with the development of parameter evaluation simulation(PES). PES presents the decision maker with the relationship of line capacity and measurement of robustness for various scenarios in different parameters and then the decision maker can determine the appropriate parameters.

Evaluation of Coagulants Dispersion in Pump Diffusion Mixer for Water Treatment (CFD모사 기법을 이용한 Pump Diffusion Mixer내의 응집체 확산분포에 대한 평가)

  • Park, Young-Oh;Park, No-Suk;Kim, Seong-Su;Kim, Ki-Don;Lim, Kyung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제22권1호
    • /
    • pp.49-63
    • /
    • 2008
  • The objectives of this research were to evaluate the pressurized/the main inlet water flowrate ratio which have been used as the most important parameter for operating the pump diffusion mixer until now, to suggest the alternative operating parameter and the relating criteria if the flowrate ratio was not inadequate. For the objectives of this research, computational fluid dynamics (CFD) simulation was conducted for 21 cases of flowrate ratio in full-scaled pump diffusion mixer. From the results of CFD simulation, the local velocity gradient values were calculated in each case in order to analyze the simulation results in more detail. For verifying CFD simulation, wet test was conducted. The wet test was to measure the factual coagulant dispersion distribution at a distance of 5.4m from deflector. From both results of CFD simulation and wet test, flowrate ratio was inadequate as operating parameter or criteria, on the other hand the pressurized/the main inlet velocity ratio(dimensionless) was useful in predicting the performance of pump diffusion mixer. Also, the injected coagulant could be dispersed evenly in overall cross section on the condition that pressurized/the main inlet velocity ratio(dimensionless) is over at least 20.

Fundamental Small-signal Modeling of Li-ion Batteries and a Parameter Evaluation Using Levy's Method

  • Zhang, Xiaoqiang;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.501-513
    • /
    • 2017
  • The fundamental small-signal modeling of lithium-ion (Li-ion) batteries and a parameter evaluation approach are investigated in this study to describe the dynamic behaviors of small signals accurately. The main contributions of the study are as follows. 1) The operational principle of the small signals of Li-ion batteries is revealed to prove that the sinusoidal voltage response of a Li-ion battery is a result of a sinusoidal current stimulation of an AC small signals. 2) Three small-signal measurement conditions, namely stability, causality, and linearity, are proved mathematically proven to ensure the validity of the frequency response of the experimental data. 3) Based on the internal structure and electrochemical operational mechanism of the battery, an AC small-signal model is established to depict its dynamic behaviors. 4) A classical least-squares curve fitting for experimental data, referred as Levy's method, are introduced and developed to identify small-signal model parameters. Experimental and simulation results show that the measured frequency response data fit well within reading accuracy of the simulated results; moreover, the small-signal parameters identified by Levy's method are remarkably close to the measured parameters. Although the fundamental and parameter evaluation approaches are discussed for Li-ion batteries, they are expected to be applicable for other batteries.

Design of A Simulation S/W for Evaluation of Auto-Landing Algorithms

  • Yoon sug-joon;Kim kang-soo;Ahn jae-joon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 한국시뮬레이션학회 2003년도 춘계학술대회논문집
    • /
    • pp.3-8
    • /
    • 2003
  • A Simulation S/W is developed to evaluate performances of MLS (Microwave Landing System) and IBLS(Integrated Beacon Landing System) in precision auto-landing. For this study classical PID and optimal LQG controllers are developed as well as mathematical models of MLS and IBLS. Ship-landing condition is also considered by assuming sinusoidal movement of the ship in the pitch direction. The simulated aircraft is F-16 in the study of precision auto-landing. For the integrated simulation environment GUI windows are designed for input of parameter values necessary for simulation, such as vehicle performance and environmental data. For validation and verification of models various comparison graphs of simulation outputs are comprised in the GUI design as well as 3D visual simulation of vehicle dynamics.

  • PDF

A Study on Applicability of Numerical Analyses for Stress Wave-Based NDE Techniques (응력파를 이용한 비파괴 탐상기법의 수치해석 적용성에 관한 연구)

  • 이영준;이종세
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.504-512
    • /
    • 2003
  • Simulation programs have been developed and used as an attempt to improve the accuracy of Non-Destructive Evaluation(NDE) techniques. The applicability of these programs is very limited, however, because it is difficult to describe the delicacy of the propagation of stress waves. To investigate the applicability of the finite element analysis for stress wave-based NDE techniques numerical simulation for Impact-Echo method and SASW method is performed. The numerical studies are performed to determine the essential parameters such as contact time of impact load, mesh size and time step size. These studies show that the choice of parameter is very important for improving the accuracy and confidence of the numerical procedure and, thereby, the applicability of the numerical analysis for stress wave-based NDE techniques

  • PDF

Design and Performance Evaluation of Controller for Unstable Motion of Underwater Vehicle after Water Entry (수중운동체 입수 초기의 불안정 거동에 대한 제어기 설계 및 성능평가)

  • Park, Yeong-Il;Ryu, Dong-Ki;Kim, Sam-Soo;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제16권6호
    • /
    • pp.166-175
    • /
    • 1999
  • This paper describes a design and performance evaluation of robust controller which overrides unstable motion and pulls out quickly after water entry of underwater vehicle dropped from aircraft or surface ship. We use 6-DOF equation for model of motions and assume parameter uncertainty to reflect the difference of real motion from modelled motion equation. we represent a nonlinear system with uncertainty as Takagi and Sugeno's(T-S) fuzzy models and design controller stabilizing them. The fuzzy controller utilizes the concept of so-called parallel distributed compensation (PDC). Finally, we confirm stability and performance of the controller through computer simulation and hardware in the loop simulation (HILS).

  • PDF