• Title/Summary/Keyword: parameter characterization

Search Result 264, Processing Time 0.027 seconds

Low Temperature Deposition of ${\mu}c$-Si:H Thin-films for Solar Cell Application (태양전지용 ${\mu}c$-Si:H 박막의 저온증착 및 특성분석)

  • Chung, Y.S.;Lee, J.C.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1592-1594
    • /
    • 2003
  • This paper presents the deposition and characterization of microcrystalline silicon(${\mu}c$-Si:H) films by HWCVD(Hot-wire Chemical Vapor Deposition) method at low substrate($300^{\circ}C$). The filament temperature, pressure and $SiH_4$ concentration were determined to be a critical parameter for the deposition of poly-Si films. Series A was deposited under the conditions of $1380^{\circ}C$(Tf), 100 mTorr and $2{\sim}10%\{SC:SiH_4/(SiH_4+H_2)\}$ for 60 min. Series B was deposited under the conditions of $1400{\sim}1450^{\circ}(T_f)$, 30 mTorr and $2{\sim}12%$(SC) for 60 min. The physical characteristics were measured by Raman and FTIR spectroscopy, dark and photoconductivity measurements under AM1.5 illumination.

  • PDF

Characterization of ${\mu}c$-Si:H Thin-film Solar Cells by Hot-wire CVD

  • Lee, J.C.;Chung, Y.S.;Kim, S.K.;Youn, K.H.;Song, J.S.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1598-1600
    • /
    • 2003
  • Microcrystalline silicon(c-Si:H) thin-film solar cells are prepared with intrinsic Si-layer by hot wire CVD. The operating parameters of solar cells are strongly affected by the filament temperature ($T_f$) during intrinsic layer. Jsc and efficiency abruptly decreases with elevated $T_f$ to $1400^{\circ}C$. This deterioration of solar cell parameters are resulted from increase of crystalline volume fraction and corresponding defect density at high $T_f$ The heater temperature ($T_h$) are also critical parameter that controls device operations. Solar cells prepared at low $T_h$ (<$200^{\circ}C$) shows a similar operating properties with devices prepared at high $T_f$, i.e. low Jsc, Voc and efficiency. The origins for this result, however, are different with that of inferior device performances at high $T_f$. In addition the phase transition of the silicon films occurs at different silane concentration (SC) by varying filament temperature, by which highest efficiency with SC vanes with $T_f$.

  • PDF

Characterization of the Effect of the Inlet Operating Conditions on the Performance of Lean Premixed Gas Turbine Combustors

  • Samperio, J.L.;Santavicca, D.A.;Lee, J.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.10-18
    • /
    • 2004
  • An experimental study of the effect of operating conditions on the behavior of a lean premixed laboratory combustor operating on natural gas has been conducted. Measurements were made characterizing the pressure fluctuations in the combustor and the flame structure over a range of inlet temperatures, inlet velocities and equivalence ratios. In addition the fuel distribution at the inlet to the combustor was varied such that it was an independent parameter in the experiment. Inlet temperature, inlet velocity and equivalence ratio were all found to have an effect on the stability characteristics of the combustor. The nature of this effect, however, depended on the fuel distribution. For example, with one fuel distribution the combustor would become unstable when the temperature was increased, whereas with a different fuel distribution the combustor would become unstable when the temperature was decreased. Similarly, the operating conditions had an effect on the flame structure. For example the intensity-weighted center of mass of the flame was found to move closer to the center body as either the temperature or equivalence ratio increased. It was interesting and somewhat surprising to note, however, that as the location of the center of mass changed with operating conditions it did so by moving along a line of constant flame angle.

  • PDF

Characterization of Inductively Coupled Ar/CH4 Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 유도결합 Ar/CH4 플라즈마의 특성 분석)

  • Cha, Ju-Hong;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1376-1382
    • /
    • 2016
  • The discharge characteristics of inductively coupled $Ar/CH_4$ plasma were investigated by fluid simulation. The inductively coupled plasma source driven by 13.56 Mhz was prepared. Properties of $Ar/CH_4$ plasma source are investigated by fluid simulation including Navier-Stokes equations. The schematics diagram of inductively coupled plasma was designed as the two dimensional axial symmetry structure. Sixty six kinds of chemical reactions were used in plasma simulation. And the Lennard Jones parameter and the ion mobility for each ion were used in the calculations. Velocity magnitude, dynamic viscosity and kinetic viscosity were investigated by using the fluid equations. $Ar/CH_4$ plasma simulation results showed that the number of hydrocarbon radical is lowest at the vicinity of gas feeding line due to high flow velocity. When the input power density was supplied as $0.07W/cm^3$, CH radical density qualitatively follows the electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density.

Microstructural analysis and characterization of 1-D ZnO nanorods grown on various substrates (다양한 기판위에 성장한 1차원 ZnO 나노막대의 특성평가 및 미세구조 분석)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.116-117
    • /
    • 2006
  • I-D ZnO nanostructures were fabricated by thermal evaporation method on Si(100), GaN and $Al_2O_3$ substrates without a catalyst at the reaction temperature of $700^{\circ}C$. Only pure Zn powder was used as a source material and Ar was used as a carrier gas. The shape and growth direction of synthesized ZnO nanostructures is determined by the crystal structure and the lattice mismatch between ZnO and substrates. The ZnO nanostructure on Si substrate were inclined regardless of their substrate orientation. The origin of ZnO/Si interface is highly lattice-mismatched and the surface of the Si substrate inevitably has the $SiO_2$ layer. The ZnO nanostructure on the $Al_2O_3$ substrate was synthesized into the rod shape and grown into particular direction. For the GaN substrate, however, ZnO nanostructure with the honeycomb-like shape was vertically grown, owing to the similar lattice parameter with GaN substrate.

  • PDF

Lipoxygenase Inhibitory and Antioxidant Activities of Isolated Compounds from Moutan Cortex

  • Ha, Do-Thi;Trung, Trinh-Nam;Thuan, Nguyen-Duy;Yim, Nam-Hui;Min, Byung-Sun;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.16 no.2
    • /
    • pp.68-74
    • /
    • 2010
  • Phytochemical investigation on the ethyl acetate and n-butanol fractions of Moutan Cortex resulted in the isolation and characterization of a new monoterpene glycoside (3) and twenty known monoterpene glycosides (1, 2, 4-21). The structure of 3 was determined by spectroscopic data interpretation and physico-chemical properties. Compounds 1 and 8 presented a remarkable inhibitory activity against lipoxygenase-1 (LOX-1) with $IC_{50}$ values of 45.2 and $37.5\;{\mu}M$, respectively. Compounds 9, 10, 13, 18, 19, and 21 showed significant 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect with $IC_{50}$ values of 9.8, 25.5, 6.4, 15.2, 18.7, and $23.7\;{\mu}M$, respectively. Benzoylpaeoniflorin (8), which exhibited the highest inhibitory effect with an $IC_{50}$ value of $37.5{\pm}0.7{\mu}M$, was further analyzed the inhibition kinetics by Lineweaver-Burk plots. Results indicated that 8 is a non-competitive inhibitor, and the kinetic parameter values were estimated to be ($31.04\;{\mu}M$, Ki), ($0.29\;{\mu}M/min$, $V_m$), and ($48.50\;{\mu}M$, $K_m$).

Growth and Characterization of Vertically well Aligned Crbon Nanotubes on Glass Substrate by Plasma Enhanced Hot Filament Chemical Vapor deposition

  • Park, Chong-Yun;Yoo, Ji-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.210-210
    • /
    • 2000
  • Vertically well aligned multi-wall carbon nanotubes (CNT) were grown on nickel coated glass substrates by plasma enhanced hot filament chemical vapor deposition at low temperatures below 600$^{\circ}C$. Acetylene and ammonia gas were used as the carbon source and a catalyst. Effects of growth parameters such as pre-treatment of substrate, plasma intensity, filament current, imput gas flow rate, gas composition, substrate temperature and different substrates on the growth characteristics of CNT were systematically investigated. Figure 1 shows SEM image of CNT grown on Ni coated glass substrate. Diameter of nanotube was 30 to 100nm depending on the growth condition. The diameter of CNT decreased and density of CNT increased as NH3 etching time etching time increased. Plasma intensity was found to be the most critical parameter to determine the growth of CNT. CNT was not grown at the plasma intensity lower than 500V. Growth of CNT without filament current was observed. Raman spectroscopy showed the C-C tangential stretching mode at 1592 cm1 as well as D line at 1366 cm-1. From the microanalysis using HRTEM, nickel cap was observed on the top of the grown CNT and very thin carbon amorphous layer of 5nm was found on the nickel cap. Current-voltage characteristics using STM showed about 34nA of current at the applied voltage of 1 volt. Electron emission from the vertically well aligned CNT was obtained using phosphor anode with onset electric field of 1.5C/um.

  • PDF

Drought Characterization Using a Generalized Complementary Principle of Evapotranspiration (증발산 상호보완이론을 이용한 실제증발산기반 가뭄해석)

  • Chun, Jong Ahn;Kim, Daeha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.380-380
    • /
    • 2019
  • 본 연구에서는 일반 상호보완이론(Generalized Complementary Relationship, GCR)을 활용하여 실제증발산량을 추정하고, 추정한 실제증발산량기반 가뭄지수로부터 미국 전역에 대한 가뭄을 해석하는 것이다. 월강수량, 최고 최저기온, 이슬점온도 등의 필요한 기상자료는 Parameter-elevation Relationships on Independent Slopes Model(PRISM)으로부터 수집하였으며, 1981년부터 2015년까지 총 35년의 미국 전역에 대한 실제증발산량을 추정하였다. 대상지역의 유역평균 강수량과 유출량의 차(P-Q)와 North American Land Data Assimilation System(NLDAS-2) Noah 지표모형(Land surface models)으로 산정한 실제증발산량과 비교 검증하였다. GCR로부터 증발산 부족량(ET Deficit, ETD)을 산정하고 이를 표준정규화하여 미국 전역에 대해 Standardized Evapotranspiration Deficit Index(SEDI)를 산정하였다. 본 연구로부터 GCR 기반 실제증발산량은 P-Q의 값과 상관계수가 0.94로 매우 높은 상관성을 보였으며, NLDAS-2 Noah모형의 실제증발산량보다 다소 크게 추정하는 경향을 보였다. SEDI와 Standard Precipitation Index(SPI)의 상관성은 지속시간이 클수록 더 크게 나타났다. 증발산 상호보완이론활용 실제증발산기반 SEDI이 강수자료를 사용하지 않고서도 적절한 가뭄해석에 이용될 수 있을 것으로 판단된다.

  • PDF

Selective Laser Sintering of Co-Cr Alloy Powders and Sintered Products Properties

  • Dong-Wan Lee;Minh-Thuyet Nguyen;Jin-Chun Kim
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.7-12
    • /
    • 2023
  • Metal-additive manufacturing techniques, such as selective laser sintering (SLS), are increasingly utilized for new biomaterials, such as cobalt-chrome (Co-Cr). In this study, Co-Cr gas-atomized powders are used as charge materials for the SLS process. The aim is to understand the consolidation of Co-Cr alloy powder and characterization of samples sintered using SLS under various conditions. The results clearly suggest that besides the matrix phase, the second phase, which is attributed to pores and oxidation particles, is observed in the sintered specimens. The as-built samples exhibit completely different microstructural features compared with the casting or wrought products reported in the literature. The microstructure reveals melt pools, which represent the characteristics of the scanning direction, in particular, or of the SLS conditions, in general. It also exposes extremely fine grain sizes inside the melt pools, resulting in an enhancement in the hardness of the as-built products. Thus, the hardness values of the samples prepared by SLS under all parameter conditions used in this study are evidently higher than those of the casting products.

Investigation of the ASTM International frost heave testing method using a temperature-controllable cell

  • Hyunwoo, Jin;Jangguen, Lee;Byung-Hyun, Ryu
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp. 583-597
    • /
    • 2022
  • Frost heave can cause uneven ground uplift that may damage geo-infrastructure. To assist damage-prevention strategies, standard frost heave testing methods and frost susceptibility criteria have been established and used in various countries. ASTM International standard testing method is potentially the most useful standard, as abundant experimental data have been acquired through its use. ASTM International provides detailed recommendations, but the method is expensive and laborious because of the complex testing procedure requiring a freezing chamber. A simple frost heave testing method using a temperature-controllable cell has been proposed to overcome these difficulties, but it has not yet been established whether a temperature-controllable cell can adequately replace the ASTM International recommended apparatus. This paper reviews the applicability of the ASTM International testing method using the temperature-controllable cell. Freezing tests are compared using various soil mixtures with and without delivering blow to depress the freezing point (as recommended by ASTM International), and it is established that delivering blow does not affect heave rate, which is the key parameter in successful characterization of frost susceptibility. As the freezing temperature decreases, the duration of supercooling of pore water shortens or is eliminated; i.e., thermal shock with a sufficiently low freezing temperature can minimize or possibly eliminate supercooling.