• 제목/요약/키워드: parallel-fed

검색결과 115건 처리시간 0.023초

Design of Robust Resonance Suppression Controller in Parameter Variation for Speed Control of Parallel Connected Dual SPMSMs Fed by a Single Inverter

  • Yun, Chul;Jang, Tae-Sung;Cho, Nae-Soo;Yoon, Byung-Keun;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1908-1916
    • /
    • 2018
  • This paper proposes a controller design method for suppressing the resonance generated in the slave motor in the middle and low speed operation range, according to the load and parameter differences between two motors, during parallel operation using the master and slave method that controls two surface permanent magnet synchronous motors connected in parallel by a single inverter. The proposed resonance suppression controller is directly obtained by analyzing the resonance characteristics, using the lead controller method. Therefore, it is possible to fundamentally reduce trial and error to set the controller gain. In addition, because the proposed resonance suppression controller was designed as a lead controller, the stability region of the system increased owing to the added zero point, making the system robust with respect to parametric variations. Simulations and experiments confirmed the usefulness of the proposed method and the system's robustness with respect to parametric variations.

출력 Inductor를 없앤 Parallel-Series 2 Transformer Half Bridge Converter (Analysis of Parallel-Series 2 Transformer Half Bridge Converter without Output Inductor)

  • 이승운;이제현;김두호;조보형;김우섭;이재호;양천석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.189-190
    • /
    • 2012
  • 최근 전기 자동차가 현실화 되면서 자동차 내부의 Li-Ion 배터리와 전장 부품들 및 납축전지 간의 에너지를 변환하는 회로에 대한 요구가 커지고 있다. 이 회로는 높은 전압을 갖는 Li-Ion 배터리와 낮은 구동 전압을 갖는 다른 전장 부품들로 인해 출력 단이 대 전류를 취한다는 특징을 갖고 있는데 이로 인하여 출력 단의 도통 손실을 줄이기 위한 연구들이 계속되고 있다. 본 논문은 기존의 2 Transformer 형식의 브릿지 컨버터를 Parallel-Series로 연결시킨 회로를 제안하고 이 회로의 동작을 분석하였다. 제안한 회로는 2차 측에 인덕터가 존재하지 않는 Current-Fed방식으로 구동 되며, 이를 통해 도통 손실을 감소 시켰으며, 2차 측을 Series 형태로 쌓아 배터리 연계 시스템에서 문제가 되었던 Wide Range 입. 출력 시스템에서의 동작 문제를 해결하였다.

  • PDF

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.

ZVZCS가 가능한 LLC AC to DC 고주파 공진 컨버터의 특성 해석에 관한 연구 (A Study on the Characteristics Analysis of LLC AC to DC High Frequency Resonant Converter capable of ZVZCS)

  • 김종해
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.741-749
    • /
    • 2021
  • 본 논문에서 제안한 전류형 LLC AC to DC 고주파 공진 컨버터는 스위치 양단에 병렬로 공진 커패시터(C1, C2)를 연결함으로써 ZVS(Zero Voltage Switching)동작 뿐만 아니라 2차측 Diode의 ZCS(Zero Current Switching) 동작이 가능하므로 스위칭 소자의 턴-온 및 2차측 다이오드의 턴-오프 손실을 저감시킬 수 있다. 본 논문에서 제안한 LLC AC to DC 고주파 공진 컨버터의 회로 해석은 무차원화 제어 파라메타를 도입하여 범용성 있게 기술하였다. 또한 제안한 LLC AC to DC 고주파 공진 컨버터의 운전 특성은 무파원화 제어 주파수(μ), 무차원화 저항(λ) 등의 무차원화 제어 파라메타를 이용하여 특성 평가를 수행하였다. 특성 평가를 통한 특성값을 기초한 LLC AC to DC 고주파 공진 컨버터 설계 기법의 일예를 제시하였으며, 실험 및 PSIM 시뮬레이션을 통해 이론 해석의 정당성을 입증하였다.

근접주사현미경의 관점에서 플랜지된 평행평판 도파관과 근접도체스트립과의 결합에 관한 연구 (A Study on the Coupling of a Flanged Parallel-Plate Waveguide to a Nearby Conducting Strip from the Viewpoint of Near-Field Scanning Microscopy)

  • 이종익;고지환;조영기
    • 한국정보통신학회논문지
    • /
    • 제13권11호
    • /
    • pp.2260-2266
    • /
    • 2009
  • 본 논문에서는 플랜지된 평행평판도파관으로 급전된 슬릿과 이에 평행하고 근접하는 도체 스트립과의 전자기적인 결합문제를 단순화된 근접주사현미 경의 관점에서 연구하였다. 슬릿의 등가어드미턴스, 슬릿근처 도파관 내부 및 외부의 무효전력, TEM파 전압반사계수의 크기 및 위상 등의 변화결과로부터 플랜지된 평행평판도파관의 특성을 조사하였다. 제안된 구조의 근접주사현미경으로서의 성능을 다양한 구조적인 파라미터들(도파관 높이, 슬릿의 폭, 스트립의 폭, 슬릿과 스트립 간격, 슬릿 폭과 도파관 높이의 비)이 TEM파 전압반사계수의 크기와 위상에 미치는 영향을 관찰하여 점검하였다. 슬릿으로부터 스트립의 변위에 따른 전압반사계수의 변화결과로부터 도파관의 높이가 작을 때 보다 높은 주사해상도를 얻을 수 있음과 반사계수의 크기 변화에 비해 위상변화가 훨씬 민감함을 확인하였다.

A High-Efficiency High-Power Step-Up Converter with Low Ripple Content

  • Kang Jeong-il;Roh Chung-Wook;Moon Gun-Woo;Youn Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.708-712
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output (PI SO) dual inductor-fed push-pull converter for high-power step­up applications is proposed. This converter is operated at a constant duty cycle and employs an auxiliary circuit to control the output voltage with a phase-shift between the two modules. It features a voltage conversion characteristic which is linear to changes in the control input, and high step-up ratio with a greatly reduced switch turn-off stress resulting in a significant increase in the converter efficiency. It also shows a low ripple content and low root-mean-square (RMS) current in the output capacitor. The operational principle is analyzed and a comparative analysis with the conventional pulse-width-modulated (PWM) PISO dual inductor-fed push-pull converter is presented. A 50kHz, 800W, 350Vdc prototype with an input of 20-32Vdc has also been constructed to validate the proposed converter. The proposed converter compares favorably with the conventional counterpart and is considered well suited to high-power step-up applications.

  • PDF

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • 정보통신설비학회논문지
    • /
    • 제5권1호
    • /
    • pp.43-59
    • /
    • 2006
  • A compact and broadband $4\times1$ array antenna was developed for 3G smart antenna system testbed. The $4\times1$ uniform linear away antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% $(VSWR\leq1.5)$, 21.78% $(VSWR\leq2)$ with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • 정보통신설비학회논문지
    • /
    • 제7권1호
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF