• 제목/요약/키워드: parallel coupled lines

Search Result 47, Processing Time 0.022 seconds

A Study on Compound Technique for Increasing the Bandwidth of Microstrip Antennas using the Paralle Coupled Lines (평행 결합 선로를 이용한 복합 광대역 기법 적용 마이크로스트립 안테나에 관한 연구)

  • 김정일;한만군;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.713-721
    • /
    • 2001
  • In this paper, parasitic patches gap-coupled microstrip antenna and stacked microstrip patch antenna combined with parallel coupled lines, which are a kind of wideband impedance matching network, are proposed to get the wider bandwidth. The iterative method using a distributed network is proposed to design the parallel coupled lines as a wideband impedance matching network. Measurements show that the proposed antennas provide wider bandwidths ~1.6 times and ~1.5 times those of conventional parasitic gap-coupled microstrip patch antenna and stacked microstrip patch antenna. In addition, measured radiation patterns show no serious variation of radiation patterns though the parallel coupled lines is added. The antenna gain is, however, lowered about 1 dB and 0.5 dB by the coupling loss in the parallel coupled lines.

  • PDF

Equivalent Circuit Design of 2.4 GHz Band LTCC Bandpass Filters Using Multilayer Inter-Digital Resonators (적층 Inter-Digital 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • Sung Gyu-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.78-83
    • /
    • 2005
  • LTCC filters have been widely used to wireless terminals. They generally adopt the multilayer structure. Some of multilayer LTCC filters are made of symmetrical parallel-coupled lines and anti-symmetrical parallel-coupled lines to reduce the length of resonators. The equivalent circuit of parallel-coupled lines was analyzed and applied to bandpass filters using multilayer parallel-coupled line resonators. The three-pole bandpass filter with the center frequency of 2.45 GHz is designed by using the proposed equivalent circuit and the measured results have good agreement with the design results.

Design of Asymmetrical Parallel Coupled lines Using Finite Element Analysis (유한요소해석을 이용한 비대칭 평면형 결합선로 설계)

  • Youn, Jae-Ho;Park, Jun-Seok;Ahn, Dal;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1841-1843
    • /
    • 2001
  • Asymmetrical parallel coupled lines are used in a number of circuits such as multi-band coupler and combline type band pass filter. Although graphical results and formulas are available for the design of coupled lines, the design procedure is hard to use, because even- and odd- mode impedances are always expressed in terms of the physical geometry. In this paper, we introduce a method to find design parameter using finite element analysis. By employing the capacitance obtained by FE analysis, design parameters for each lines are extracted. To show the validity of extracted design parameter for asymmetrical parallel coupled line, we have designed and simulated a planar type combline band pass filter.

  • PDF

A Study on Wideband Microstrip Array Antennas Using the Parallel Coupled Lines (펑행 결합 선로를 이용한 광대역 마이크로스트립 배열 안테나에 관한 연구)

  • 김정일;한만군;윤영중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1724-1732
    • /
    • 2001
  • In this paper, a technique for increasing the bandwidth of microstrip array antennas using the parallel coupled lines on a single layer is presented. Four types of wideband microstrip array antenna are designed and the characteristics of each type are analyzed. In addition, an iterative method using a distributed network is proposed to design the parallel coupled lines as a wideband impedance matching network. Measurements show that the proposed antennas provide wider bandwidths ∼1.7 times those of conventional microstirp array antennas, while the sizes of proposed antennal are the same as that of a conventional array. And low cross-polarization level can be obtained through symmetrical locations of the parallel coupled lines section

  • PDF

Compact Dual-Band Bandpass Filter Using U-Shaped Stepped-Impedance Resonators with Parallel Coupled Structures

  • Sung, Gyuje
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.73-77
    • /
    • 2018
  • This paper proposes a dual-band bandpass filter using stepped-impedance resonators (SIRs) with parallel coupled structures. The proposed filter adopts U-shaped SIRs with parallel coupled lines (PCLs) that have interdigital and comb-line shorted ends. The central PCLs build an upper passband and a transmission zero, and the two U-shaped SIRs build a lower passband. Four resonators and coupling structures are theoretically analyzed to derive its scattering parameters. A novel dual-band bandpass filter is designed and fabricated using the induced scattering characteristics. The measured results show that the fabricated dual-band bandpass filter has an insertion loss of less than 1.02 dB in the lower band of 2.45 GHz and of 3.01 dB in the upper band of 3.42 GHz, and a band-to-band isolation of more than 40 dB, from 3.14 to 3.2 GHz.

A Study on a New Measurement Method of the Microstrip Parallel Coupled Lne Parameters (마이크로스트립 평행 결합선로 파라미터의 새로운 측정방법에 관한 연구)

  • Chang, Ik-Soo;Yoon, Young-Chul;Ahn, Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.139-143
    • /
    • 1988
  • A new measurement method of coupled transmission line characteristics is described. This method presents precision values of even-and odd-mode impedances as well as effective dielectric constants of symmetric parallel coupled microstrip lines from the scalar quantities obtained by transmission coefficients at two different resonance frequencies. Especially these values include dispersion effects in the measured frequency band. The measured impedances and effective dielectric constants of actually fabricated coupled lines on the Teflon substrates with low dielectric constants are good agreement with predicted values. And the experimental pass band characteristics of single section resonator by using previously designed coupled lines agree well with theoretical values.

  • PDF

The Design of a Wideband 3 dB Quadrature Coupler using N-Section Parallel-Coupled Lines (N단 평행 결합 선로를 이용한 90° 광대역 3 dB 결합기 설계)

  • 조정훈;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.94-100
    • /
    • 2002
  • In this paper, we proposed a 3 dB coupler using N-section parallel-coupled lines and designed a very compact one based on the analysis results. The coupled line has been analyzed by spectral domain method. After we obtain the s-parameters of N-section parallel-coupled lines by using port reduction method 4-port s-parameters are derived. The 3 dB couplers, which were fabricated, are not necessary to implement high impedance lines and tight coupling gaps as Lange Couplers because loose coupling is used. To realize a minimum section, we used the PCB that has high a dielectric constant and a thickness. The experimental results show that it has wide bandwidth of about 42 %(0.5 dB unbalance) from 3.6 GHz to 5.5 GHz and phase difference within 1 degree. Also, The isolation characteristics about 15 dB at its pass-band are obtained.

A Equivalent Circuit for Lossless 2-Port Using Inverter and Its Application (무 손실 2-포트 회로의 인버터를 사용한 등가회로 및 응용)

  • Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.761-770
    • /
    • 2008
  • Impedance or admittance inverter is a conceptual 2-port device frequently used in microwave filter design. In this paper, the equivalent circuit using inverter for general loss less 2-port circuit is presented. Our equivalent circuit can be directly and easily represented with z- or y-parameters compared with the conventional methods. Based on the representation, the derived results for various coupled lines such as parallel coupled line and anti-parallel coupled lines are compared ours. In addition, the results of other workers for improvement of the distortion in frequency response of microstrip coupled line filter are derived using our representation and compared. The proposed equivalent circuit shows the difference with conventional equivalent circuit so the conventional design method can not be applied to parallel coupled line filter with our representation. So in this paper the novel design method is proposed and we showed the method yields more accurate design results.

Design of LTCC Bandpass Filter using Multilayer Resonators (적층 구조의 공진기를 이용한 LTCC 대역통과 여파기의 설계)

  • Seong Gyu Je;Yang Seung Hwan
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.234-238
    • /
    • 2003
  • The LTCC bandpass filter using multilayer resonators is made of combline type and interdigital type parallel coupled-lines. The equivalent circuits of parallel coupled-lines are analysed. They are applied to make an equivalent circuit of LTCC bandpass filter using multilayer resonators. The 3-pole bandpass filter of the center frequency of 2.45GHz with 250Hz bandwidth is designed and fabricated. The simulated result of the bandpass filter are presented.

  • PDF

Equivalent Circuit Design of 2.4GHz Band LTCC Bandpass Filter (2.4GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • 성규제;양승환;김동연;유재하;여동훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.313-316
    • /
    • 2003
  • The LTCC bandpass filter using multilayer resonators is made of combline type and interdigital type parallel coupled-lines. The equivalent circuits of parallel coupled-lines are analysed. They are applied to make an equivalent circuit of LTCC bandpass filter using multilayer resonators. The 3-pole bandpass filter of the center frequency of 2.45GHz with 200Hz bandwidth is designed and fabricated. The simulated result of the bandpass filter are presented.

  • PDF