• Title/Summary/Keyword: parallel computer processing

Search Result 652, Processing Time 0.027 seconds

Experimental deployment and validation of a distributed SHM system using wireless sensor networks

  • Castaneda, Nestor E.;Dyke, Shirley;Lu, Chenyang;Sun, Fei;Hackmann, Greg
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.787-809
    • /
    • 2009
  • Recent interest in the use of wireless sensor networks for structural health monitoring (SHM) is mainly due to their low implementation costs and potential to measure the responses of a structure at unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing must be developed in parallel with this technology to significantly reduce the power consumption and communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection system based on a distributed processing approach is proposed and experimentally validated using a wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board processing capabilities of the wireless sensor are exploited to significantly reduce the communication load and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted to the base station for decision-making. The results indicate that this distributed implementation can be used to successfully detect and localize regions of damage in a structure. To further support the experimental results obtained, the capabilities of the proposed system were tested through a series of numerical simulations with an expanded set of damage scenarios.

Real-time Full-view 3D Human Reconstruction using Multiple RGB-D Cameras

  • Yoon, Bumsik;Choi, Kunwoo;Ra, Moonsu;Kim, Whoi-Yul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.224-230
    • /
    • 2015
  • This manuscript presents a real-time solution for 3D human body reconstruction with multiple RGB-D cameras. The proposed system uses four consumer RGB/Depth (RGB-D) cameras, each located at approximately $90^{\circ}$ from the next camera around a freely moving human body. A single mesh is constructed from the captured point clouds by iteratively removing the estimated overlapping regions from the boundary. A cell-based mesh construction algorithm is developed, recovering the 3D shape from various conditions, considering the direction of the camera and the mesh boundary. The proposed algorithm also allows problematic holes and/or occluded regions to be recovered from another view. Finally, calibrated RGB data is merged with the constructed mesh so it can be viewed from an arbitrary direction. The proposed algorithm is implemented with general-purpose computation on graphics processing unit (GPGPU) for real-time processing owing to its suitability for parallel processing.

An Implementation of a Convolutional Accelerator based on a GPGPU for a Deep Learning (Deep Learning을 위한 GPGPU 기반 Convolution 가속기 구현)

  • Jeon, Hee-Kyeong;Lee, Kwang-yeob;Kim, Chi-yong
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.303-306
    • /
    • 2016
  • In this paper, we propose a method to accelerate convolutional neural network by utilizing a GPGPU. Convolutional neural network is a sort of the neural network learning features of images. Convolutional neural network is suitable for the image processing required to learn a lot of data such as images. The convolutional layer of the conventional CNN required a large number of multiplications and it is difficult to operate in the real-time on the embedded environment. In this paper, we reduce the number of multiplications through Winograd convolution operation and perform parallel processing of the convolution by utilizing SIMT-based GPGPU. The experiment was conducted using ModelSim and TestDrive, and the experimental results showed that the processing time was improved by about 17%, compared to the conventional convolution.

Real-time Stabilization Method for Video acquired by Unmanned Aerial Vehicle (무인 항공기 촬영 동영상을 위한 실시간 안정화 기법)

  • Cho, Hyun-Tae;Bae, Hyo-Chul;Kim, Min-Uk;Yoon, Kyoungro
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Video from unmanned aerial vehicle (UAV) is influenced by natural environments due to the light-weight UAV, specifically by winds. Thus UAV's shaking movements make the video shaking. Objective of this paper is making a stabilized video by removing shakiness of video acquired by UAV. Stabilizer estimates camera's motion from calculation of optical flow between two successive frames. Estimated camera's movements have intended movements as well as unintended movements of shaking. Unintended movements are eliminated by smoothing process. Experimental results showed that our proposed method performs almost as good as the other off-line based stabilizer. However estimation of camera's movements, i.e., calculation of optical flow, becomes a bottleneck to the real-time stabilization. To solve this problem, we make parallel stabilizer making average 30 frames per second of stabilized video. Our proposed method can be used for the video acquired by UAV and also for the shaking video from non-professional users. The proposed method can also be used in any other fields which require object tracking, or accurate image analysis/representation.

Association Rule Mining and Collaborative Filtering-Based Recommendation for Improving University Graduate Attributes

  • Sheta, Osama E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.339-345
    • /
    • 2022
  • Outcome-based education (OBE) is a tried-and-true teaching technique based on a set of predetermined goals. Program Educational Objectives (PEOs), Program Outcomes (POs), and Course Outcomes (COs) are the components of OBE. At the end of each year, the Program Outcomes are evaluated, and faculty members can submit many recommended measures which dependent on the relationship between the program outcomes and its courses outcomes to improve the quality of program and hence the overall educational program. When a vast number of courses are considered, bad actions may be proposed, resulting in unwanted and incorrect decisions. In this paper, a recommender system, using collaborative filtering and association rules algorithms, is proposed for predicting the best relationship between the program outcomes and its courses in order to improve the attributes of the graduates. First, a parallel algorithm is used for Collaborative Filtering on Data Model, which is designed to increase the efficiency of processing big data. Then, a parallel similar learning outcomes discovery method based on matrix correlation is proposed by mining association rules. As a case study, the proposed recommender system is applied to the Computer Information Systems program, College of Computer Sciences and Information Technology, Al-Baha University, Saudi Arabia for helping Program Quality Administration improving the quality of program outcomes. The obtained results revealed that the suggested recommender system provides more actions for boosting Graduate Attributes quality.

The Efficient Method of Parallel Genetic Algorithm using MapReduce of Big Data (빅 데이터의 MapReduce를 이용한 효율적인 병렬 유전자 알고리즘 기법)

  • Hong, Sung-Sam;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.385-391
    • /
    • 2013
  • Big Data is data of big size which is not processed, collected, stored, searched, analyzed by the existing database management system. The parallel genetic algorithm using the Hadoop for BigData technology is easily realized by implementing GA(Genetic Algorithm) using MapReduce in the Hadoop Distribution System. The previous study that the genetic algorithm using MapReduce is proposed suitable transforming for the GA by MapReduce. However, they did not show good performance because of frequently occurring data input and output. In this paper, we proposed the MRPGA(MapReduce Parallel Genetic Algorithm) using improvement Map and Reduce process and the parallel processing characteristic of MapReduce. The optimal solution can be found by using the topology, migration of parallel genetic algorithm and local search algorithm. The convergence speed of the proposal method is 1.5 times faster than that of the existing MapReduce SGA, and is the optimal solution can be found quickly by the number of sub-generation iteration. In addition, the MRPGA is able to improve the processing and analysis performance of Big Data technology.

An Advanced Parallel Join Algorithm for Managing Data Skew on Hypercube Systems (하이퍼큐브 시스템에서 데이타 비대칭성을 고려한 향상된 병렬 결합 알고리즘)

  • 원영선;홍만표
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.117-129
    • /
    • 2003
  • In this paper, we propose advanced parallel join algorithm to efficiently process join operation on hypercube systems. This algorithm uses a broadcasting method in processing relation R which is compatible with hypercube structure. Hence, we can present optimized parallel join algorithm for that hypercube structure. The proposed algorithm has a complete solution of two essential problems - load balancing problem and data skew problem - in parallelization of join operation. In order to solve these problems, we made good use of the characteristics of clustering effect in the algorithm. As a result of this, performance is improved on the whole system than existing algorithms. Moreover. new algorithm has an advantage that can implement non-equijoin operation easily which is difficult to be implemented in hash based algorithm. Finally, according to the cost model analysis. this algorithm showed better performance than existing parallel join algorithms.

Parallel Computation for Extended Edit Distances Using the Shared Memory on GPU (GPU의 공유메모리를 활용한 확장편집거리 병렬계산)

  • Kim, Youngho;Na, Joong Chae;Sim, Jeong Seop
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.7
    • /
    • pp.213-218
    • /
    • 2015
  • Given two strings X and Y (|X|=m, |Y|=n) over an alphabet ${\Sigma}$, the extended edit distance between X and Y can be computed using dynamic programming in O(mn) time and space. Recently, a parallel algorithm that takes O(m+n) time and O(mn) space using m threads to compute the extended edit distance between X and Y was presented. In this paper, we present an improved parallel algorithm using the shared memory on GPU. The experimental results show that our parallel algorithm runs about 19~25 times faster than the previous parallel algorithm.

Checkpoint/Resimulation Overhead Minimization with Sporadic Synchronization in Prediction-Based Parallel Logic Simulation (간헐적 동기화를 통한 예측기반 병렬 로직 시뮬레이션에서의 체크포인트/재실행 오버헤드 최소화)

  • Kwak, Doohwan;Yang, Seiyang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.5
    • /
    • pp.147-152
    • /
    • 2015
  • In general, there are two synchronization methods in parallel event-driven simulation, pessimistic approach and optimistic approach. In this paper, we propose a new approach, sporadic synchronization combining both for prediction-based parallel event-driven logic simulation. We claim this hybrid solution is pretty effective to minimize both checkpoint overhead and restart overhead, which are related problems with frequent false predictions for improving the performance of the prediction-based parallel event-driven logic simulation. The experiment has clearly shown the advantage of the proposed approach.

An Efficient Distributed Shared Memory System for Parallel GIS (병렬 GIS를 위한 효율적인 분산공유메모리 시스템)

  • Jeong, Sang-Hwa;Ryu, Gwang-Yeol;Go, Yun-Yeong;Gwak, Min-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.6
    • /
    • pp.700-707
    • /
    • 1999
  • 본 논문에서는 GIS 관련 연산을 실시간에 효율적으로 처리하기 위한 분산공유메모리 기반 병렬처리 시스템을 제안한다. 본 논문의 분산공유메모리 시스템은 메시지전달 방식의 분산메모리 MIMD 컴퓨터 상에 소프트웨어 기반 분산공유메모리 모듈을 탑재함으로써 구현되었다. 또한 GIS 연산의 기본이 되는 공간 객체를 공유의 기본 단위로 설정하고, GIS 데이타의 특성을 반영하여 읽기전용 공유데이타 타입을 추가하였으며, 네트워크 오버헤드를 줄이기 위하여 복수의 객체를 한번에 읽어오는 bulk access가 가능하도록 하였다. 본 시스템에서는 GIS 데이타의 효율적인 분배를 위하여 부하균등화 기법으로 guided self scheduling을 사용하였다. 실험결과 본 시스템은 네트워크 캐쉬의 효율적인 활용을 통하여 소프트웨어 기반 분산메모리 시스템의 오버헤드에도 불구하고 MPI 기반 메시지전달 방식에 비하여 향상된 성능을 얻을 수 있었다.Abstract In this paper, we propose a distributed shared memory(DSM) based parallel processing system to process GIS related computations efficiently in real time. The system is based on a software DSM module implemented on top of a distributed MIMD computer. In the DSM system, spatial object, which is a fundamental structure to represent GIS data, is used as a basic unit for sharing, and a read-only shared data type is added to reflect the characteristics of GIS data. In addition, a bulk access to multiple shared data is made possible to reduce the network overhead. A guided self scheduling method is devised for efficient load balancing in distributing GIS data to parallel processors. The experimental results show that the DSM system performs better than an MPI based message-passing system through the efficient utilization of network cache in spite of the system's software overhead.