• Title/Summary/Keyword: parallel computation offloading

Search Result 2, Processing Time 0.017 seconds

Adaptive Application Component Mapping for Parallel Computation Offloading in Variable Environments

  • Fan, Wenhao;Liu, Yuan'an;Tang, Bihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4347-4366
    • /
    • 2015
  • Distinguished with traditional strategies which offload an application's computation to a single server, parallel computation offloading can promote the performance by simultaneously delivering the computation to multiple computing resources around the mobile terminal. However, due to the variability of communication and computation environments, static application component multi-partitioning algorithms are difficult to maintain the optimality of their solutions in time-varying scenarios, whereas, over-frequent algorithm executions triggered by changes of environments may bring excessive algorithm costs. To this end, an adaptive application component mapping algorithm for parallel computation offloading in variable environments is proposed in this paper, which aims at minimizing computation costs and inter-resource communication costs. It can provide the terminal a suitable solution for the current environment with a low incremental algorithm cost. We represent the application component multi-partitioning problem as a graph mapping model, then convert it into a pathfinding problem. A genetic algorithm enhanced by an elite-based immigrants mechanism is designed to obtain the solution adaptively, which can dynamically adjust the precision of the solution and boost the searching speed as transmission and processing speeds change. Simulation results demonstrate that our algorithm can promote the performance efficiently, and it is superior to the traditional approaches under variable environments to a large extent.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.