• Title/Summary/Keyword: parallel clustering

Search Result 105, Processing Time 0.029 seconds

An Efficient Data Distribution Method on a Distributed Shared Memory Machine (분산공유 메모리 시스템 상에서의 효율적인 자료분산 방법)

  • Min, Ok-Gee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1433-1442
    • /
    • 1996
  • Data distribution of SPMD(Single Program Multiple Data) pattern is one of main features of HPF (High Performance Fortran). This paper describes design is sues for such data distribution and its efficient execution model on TICOM IV computer, named SPAX(Scalable Parallel Architecture computer based on X-bar network). SPAX has a hierarchical clustering structure that uses distributed shared memory(DSM). In such memory structure, it cannot make a full system utilization to apply unanimously either SMDD(shared Memory Data Distribution) or DMDD(Distributed Memory Data Distribution). Here we propose another data distribution model, called DSMDD(Distributed Shared Memory Data Distribution), a data distribution model based on hierarchical masters-slaves scheme. In this model, a remote master and slaves are designated in each node, shared address scheme is used within a node and message passing scheme between nodes. In our simulation, assuming a node size in which system performance degradation is minimized,DSMDD is more effective than SMDD and DMDD. Especially,the larger number of logical processors and the less data dependency between distributed data,the better performace is obtained.

  • PDF

A qualitative content analysis based on an extended parallel process model study of daycare center teacher behaviors concerning the eye health of preschool children (어린이집 교사 대상 학령전기 아동의 눈건강에 대한 확장된 병행과정 모델 기반 질적 내용분석 연구)

  • Park, Il Tae;Kim, Gi Joong
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.30 no.3
    • /
    • pp.222-231
    • /
    • 2024
  • Purpose: This study is to explore the antecedent factors of daycare teacher behaviors concerning the eye health of preschool children by applying an extended parallel process model. Methods: Focus group interviews were conducted with ten daycare center teachers on September 4 and 14, 2023. A data analysis was performed according to the content analysis method by clustering the data into the four categories: the two threat factors of severity and susceptibility and the two efficacy factors of self-efficacy and response-efficacy. Results: Daycare center teachers' perception of the severity of eye health problems in preschool children was high in relation to eye trauma, but it was recognized that viewing the electronic devices were of a less severe because symptoms were not noticed in a short period of time. They also showed low susceptibility because they were not sufficiently interested in the eye health hazard behaviors of preschool children. The self-efficacy of daycare center teachers was low because this was a lack of knowledge about symptoms of eye problems. However, they recognized that eye health activities performed in the preschool age could prevent negative eye health outcomes, thus showing a high response efficacy. Conclusion: In the future, it is necessary to increase the sensitivity and engagement of daycare center teachers concerning with the eye health of preschool children and to increase their self-efficacy. It will also be necessary to develop various interventions to improve eye health for preschool children that can be implemented by daycare center teachers.

Decombined Distributed Parallel VQ Codebook Generation Based on MapReduce (맵리듀스를 사용한 디컴바인드 분산 VQ 코드북 생성 방법)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.365-371
    • /
    • 2014
  • In the era of big data, algorithms for the existing IT environment cannot accept on a distributed architecture such as hadoop. Thus, new distributed algorithms which apply a distributed framework such as MapReduce are needed. Lloyd's algorithm commonly used for vector quantization is developed using MapReduce recently. In this paper, we proposed a decombined distributed VQ codebook generation algorithm based on a distributed VQ codebook generation algorithm using MapReduce to get a result more fast. The result of applying the proposed algorithm to big data showed higher performance than the conventional method.

The Analysis of the effects of the platform screen door on the fire driven flow in The Deeply Underground Subway Station (대심도 지하역사에서의 화재시 플랫폼 스크린 도어에 의한 열, 연기 거동 영향 분석)

  • Jang, Y.J.;Kim, H.B.;Lee, C.H.;Jung, W.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1984-1989
    • /
    • 2008
  • In this study, fire simulations were performed to analyze the characteristics of the fire driven flow and the effects of the platform screen door on the smoke flow in the station, when the fire occurred in the center of the platform. Soongsil Univ. station (line number 7, 47m in depth underground) was chosen which was the one of the deepest underground subway stations in the Seoul metro, SMRT. The parallel computational method was employed to compute the heat and mass transfer eqn's with 6 CPUs of the linux clustering machine. The fire driven flow was simulated with using FDS code in which LES method was applied. The Heat release rate was 10MW and The Ultrafast model was applied for the growing model of the fire source. The 10,000,000 structured grids were used.

  • PDF

Topic Analysis of Scholarly Communication Research

  • Ji, Hyun;Cha, Mikyeong
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.2
    • /
    • pp.47-65
    • /
    • 2021
  • This study aims to identify specific topics, trends, and structural characteristics of scholarly communication research, based on 1,435 articles published from 1970 to 2018 in the Scopus database through Latent Dirichlet Allocation topic modeling, serial analysis, and network analysis. Topic modeling, time series analysis, and network analysis were used to analyze specific topics, trends, and structures, respectively. The results were summarized into three sets as follows. First, the specific topics of scholarly communication research were nineteen in number, including research resource management and research data, and their research proportion is even. Second, as a result of the time series analysis, there are three upward trending topics: Topic 6: Open Access Publishing, Topic 7: Green Open Access, Topic 19: Informal Communication, and two downward trending topics: Topic 11: Researcher Network and Topic 12: Electronic Journal. Third, the network analysis results indicated that high mean profile association topics were related to the institution, and topics with high triangle betweenness centrality, such as Topic 14: Research Resource Management, shared the citation context. Also, through cluster analysis using parallel nearest neighbor clustering, six clusters connected with different concepts were identified.

Design Plan of Signal Processing Structure for Real-Time Application in Drone Detection Radar (실시간 적용을 위한 드론 탐지 레이다용 신호처리 구조 설계 방안)

  • Kong, Young-Joo;Sohn, Sung-Hwan;Hyun, Jun-Seok;Yoo, Dong-Gil;Cho, In-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.31-36
    • /
    • 2022
  • Recently, drones are being used in various fields, and drone technology is also developing. The risks of drones are increasing, then technology to detect drones is important. However, it is extremely difficult to detect and recognize drones due to the low level radar cross section of the commercial drones. In this paper, a signal processor structure that was mounted the miniaturized and light-weighted was designed. in order to process large amounts of data in real time, parallel processing was performed for each channel and an algorithm was applied to shorten the operation time in each step. As a test of verifing the detection performance through test, it was confirmed that the structure design works in real time.

Parallel clustering technology for real-time LWIR band image processing (실시간 LWIR 밴드 영상 처리를 위한 병렬 클러스터링 기술)

  • Cho, Yongjin;Lee, Kyou-seung;Hong, Seongha;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.158-158
    • /
    • 2017
  • 비닐포장 하부에 위치한 콩의 생장 초기에 발생한 초엽을 인식하기 위한 연구를 수행중이다. 선행 연구에서 비닐포장에 접촉한 콩 초엽으로 인해 비닐포장 상부 표면의 열 반응 분포에 변화가 있음을 발견하였다. 현장에서 주행 중에 콩 초엽의 위치를 실시간으로 인식하고 연동된 선형 또는 회전형 엑츄에이터를 제어하여 정확한 위치에 천공을 수행하기 위해서는 계측 시스템과 제어 시스템간의 시간적 차이를 최소할 수 있는 실시간 신호 처리 기술이 필수적이다. 선행 연구에서 사용한 다중 IR 센서의 분해능은 $16{\times}4pixel$이며 주파수는 3 Hz로, 폭이 30cm 내외인 비닐포장 상부의 정밀 분석에 한계가 있음을 발견하였다. 이를 해결하기 위하여 분해능과 계측 주기를 개선할 수 있는 초소형 ($1cm{\times}1cm{\times}1cm$) 열화상 센서를 이용하였다. LWIR(Longwave infrared)영역에 해당하는 $8{\mu}m{\sim}14{\mu}m$의 영역에서 $0.05^{\circ}C$의 분해능을 보이는 $ Lepton^{TM}$ (500-0690-00, FLIR, Goleta, CA)모델을 사용하였다. 프레임당 $80{\times}60$ 픽셀의 정보가 2 Byte의 단위로 계측이 되며 9 Hz의 주파수로 대상면의 열 분포를 측정할 수 있다. 이론적으로 초당 정보 전송량은 86,400 Byte ($80{\times}60{\times}2{\times}9$)이며, 1 m를 진행하는 주행형 천공기에 적용할 경우 1 프레임당 10cm 정도의 면적을 측정하므로, 최대 위치 판정 분해능은 약 10 cm / 60 pixel = 0.17 cm/pixel로 상대적으로 정밀한 위치 판별이 가능하다. $80{\times}60{\times}2Byet$의 정보를 0.1초 이내에 분석해야 하는 기술적 과제를 해결하기 위하여 천공 작업기에 적합한 상용 SBC(Single board computer)의 클럭 속도(1 Ghz)로 처리 가능한 공간 분포 분석 알고리즘을 개발하였다. 전체 이미지 도메인을 한 번에 분석하는데 소요되는 시간을 최소화하기 위하여 공간정보 행렬을 균등히 배분하고 별도의 프로세서에서 Feature를 분석한 후 개별 프로세서의 결과를 경합식으로 판정하는 기술을 연구하였다. 오픈 소스인 MPICH(www.mpich.org) 라이브러리를 이용하여 개발한 신호 분석 프로그램을 클러스터링으로 연동된 개별 코어에 설치/수행 하였다. 2D 행렬인 열분포 정보를 공간적으로 균등 분배하여 개별 코어에서 행렬의 Spatial domain analysis를 수행하였다. $20{\times}20$의 클러스터링 단위를 이용할 경우 총 12개의 코어가 필요하였으며, 초당 10회의 연산이 가능함을 확인하였다. 병렬 클러스터링 기술을 이용하여 1m/s 내외의 주행 속도에 대응이 가능한 비닐포장 상부 열 분포 분석 시스템을 구현하였다.

  • PDF

Classification of Consonants by SOM and LVQ (SOM과 LVQ에 의한 자음의 분류)

  • Lee, Chai-Bong;Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • In an effort to the practical realization of phonetic typewriter, we concentrate on the classification of consonants in this paper. Since many of consonants do not show periodic behavior in time domain and thus the validity for Fourier analysis of them are not convincing, vector quantization (VQ) via LBG clustering is first performed to check if the feature vectors of MFCC and LPCC are ever meaningful for consonants. Experimental results of VQ showed that it's not easy to draw a clear-cut conclusion as to the validity of Fourier analysis for consonants. For classification purpose, two kinds of neural networks are employed in our study: self organizing map (SOM) and learning vector quantization (LVQ). Results from SOM revealed that some pairs of phonemes are not resolved. Though LVQ is free from this difficulty inherently, the classification accuracy was found to be low. This suggests that, as long as consonant classification by LVQ is concerned, other types of feature vectors than MFCC should be deployed in parallel. However, the combination of MFCC/LVQ was not found to be inferior to the classification of phonemes by language-moded based approach. In all of our work, LPCC worked worse than MFCC.

Processing large-scale data with Apache Spark (Apache Spark를 활용한 대용량 데이터의 처리)

  • Ko, Seyoon;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1077-1094
    • /
    • 2016
  • Apache Spark is a fast and general-purpose cluster computing package. It provides a new abstraction named resilient distributed dataset, which is capable of support for fault tolerance while keeping data in memory. This type of abstraction results in a significant speedup compared to legacy large-scale data framework, MapReduce. In particular, Spark framework is suitable for iterative machine learning applications such as logistic regression and K-means clustering, and interactive data querying. Spark also supports high level libraries for various applications such as machine learning, streaming data processing, database querying and graph data mining thanks to its versatility. In this work, we introduce the concept and programming model of Spark as well as show some implementations of simple statistical computing applications. We also review the machine learning package MLlib, and the R language interface SparkR.

Application of Bioinformatics for the Functional Genomics Analysis of Prostate Cancer Therapy

  • Mousses, Spyro
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.74-82
    • /
    • 2000
  • Prostate cancer initially responds and regresses in response to androgen depletion therapy, but most human prostate cancers will eventually recur, and re-grow as an androgen independent tumor. Once these tumors become hormone refractory, they usually are incurable leading to death for the patient. Little is known about the molecular details of how prostate cancer cells regress following androgen ablation and which genes are involved in the androgen independent growth following the development of resistance to therapy. Such knowledge would reveal putative drug targets useful in the rational therapeutic design to prevent therapy resistance and control androgen independent growth. The application of genome scale technologies have permitted new insights into the molecular mechanisms associated with these processes. Specifically, we have applied functional genomics using high density cDNA microarray analysis for parallel gene expression analysis of prostate cancer in an experimental xenograft system during androgen withdrawal therapy, and following therapy resistance, The large amount of expression data generated posed a formidable bioinformatics challenge. A novel template based gene clustering algorithm was developed and applied to the data to discover the genes that respond to androgen ablation. The data show restoration of expression of androgen dependent genes in the recurrent tumors and other signaling genes. Together, the discovered genes appear to be involved in prostate cancer cell growth and therapy resistance in this system. We have also developed and applied tissue microarray (TMA) technology for high throughput molecular analysis of hundreds to thousands of clinical specimens simultaneously. TMA analysis was used for rapid clinical translation of candidate genes discovered by cDNA microarray analysis to determine their clinical utility as diagnostic, prognostic, and therapeutic targets. Finally, we have developed a bioinformatic approach to combine pharmacogenomic data on the efficacy and specificity of various drugs to target the discovered prostate cancer growth associated candidate genes in an attempt to improve current therapeutics.

  • PDF