• Title/Summary/Keyword: parallel clustering

Search Result 105, Processing Time 0.034 seconds

Coordinated Cognitive Tethering in Dense Wireless Areas

  • Tabrizi, Haleh;Farhadi, Golnaz;Cioffi, John Matthew;Aldabbagh, Ghadah
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.314-325
    • /
    • 2016
  • This paper examines the resource gain that can be obtained from the creation of clusters of nodes in densely populated areas. A single node within each such cluster is designated as a "hotspot"; all other nodes then communicate with a destination node, such as a base station, through such hotspots. We propose a semi-distributed algorithm, referred to as coordinated cognitive tethering (CCT), which clusters all nodes and coordinates hotspots to tether over locally available white spaces. CCT performs the following these steps: (a) groups nodes based on a modified k-means clustering algorithm; (b) assigns white-space spectrum to each cluster based on a distributed graph-coloring approach to maximize spectrum reuse, and (c) allocates physical-layer resources to individual users based on local channel information. Unlike small cells (for example, femtocells and WiFi), this approach does not require any additions to existing infrastructure. In addition to providing parallel service to more users than conventional direct communication in cellular networks, simulation results show that CCT can increase the average battery life of devices by 30%, on average.

Improving Data Accuracy Using Proactive Correlated Fuzzy System in Wireless Sensor Networks

  • Barakkath Nisha, U;Uma Maheswari, N;Venkatesh, R;Yasir Abdullah, R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3515-3538
    • /
    • 2015
  • Data accuracy can be increased by detecting and removing the incorrect data generated in wireless sensor networks. By increasing the data accuracy, network lifetime can be increased parallel. Network lifetime or operational time is the time during which WSN is able to fulfill its tasks by using microcontroller with on-chip memory radio transceivers, albeit distributed sensor nodes send summary of their data to their cluster heads, which reduce energy consumption gradually. In this paper a powerful algorithm using proactive fuzzy system is proposed and it is a mixture of fuzzy logic with comparative correlation techniques that ensure high data accuracy by detecting incorrect data in distributed wireless sensor networks. This proposed system is implemented in two phases there, the first phase creates input space partitioning by using robust fuzzy c means clustering and the second phase detects incorrect data and removes it completely. Experimental result makes transparent of combined correlated fuzzy system (CCFS) which detects faulty readings with greater accuracy (99.21%) than the existing one (98.33%) along with low false alarm rate.

Design Space Exploration of Many-Core Processor for High-Speed Cluster Estimation (고속의 클러스터 추정을 위한 매니코어 프로세서의 디자인 공간 탐색)

  • Seo, Jun-Sang;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.1-12
    • /
    • 2014
  • This paper implements and improves the performance of high computational subtractive clustering algorithm using a single instruction, multiple data (SIMD) based many-core processor. In addition, this paper implements five different processing element (PE) architectures (PEs=16, 64, 256, 1,024, 4,096) to select an optimal PE architecture for the subtractive clustering algorithm by estimating execution time and energy efficiency. Experimental results using two different medical images and three different resolutions ($128{\times}128$, $256{\times}256$, $512{\times}512$) show that PEs=4,096 achieves the highest performance and energy efficiency for all the cases.

Speech Recognition Performance Improvement using a convergence of GMM Phoneme Unit Parameter and Vocabulary Clustering (GMM 음소 단위 파라미터와 어휘 클러스터링을 융합한 음성 인식 성능 향상)

  • Oh, SangYeob
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.35-39
    • /
    • 2020
  • DNN error is small compared to the conventional speech recognition system, DNN is difficult to parallel training, often the amount of calculations, and requires a large amount of data obtained. In this paper, we generate a phoneme unit to estimate the GMM parameters with each phoneme model parameters from the GMM to solve the problem efficiently. And it suggests ways to improve performance through clustering for a specific vocabulary to effectively apply them. To this end, using three types of word speech database was to have a DB build vocabulary model, the noise processing to extract feature with Warner filters were used in the speech recognition experiments. Results using the proposed method showed a 97.9% recognition rate in speech recognition. In this paper, additional studies are needed to improve the problems of improved over fitting.

Implementation of Adaptive Hierarchical Fair Com pet ion-based Genetic Algorithms and Its Application to Nonlinear System Modeling (적응형 계층적 공정 경쟁 기반 병렬유전자 알고리즘의 구현 및 비선형 시스템 모델링으로의 적용)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.120-122
    • /
    • 2006
  • The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator (UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화)

  • Kim, Gil-Sung;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

Parallel Information Retrieval using Document Clustering Techniques (문서 클러스터링 기법을 활용한 병렬 정보 검색)

  • 강유경;박세진;류광렬;정상화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.750-752
    • /
    • 1998
  • 본 논문은 고품질의 정보를 신속하게 제공할 수 있으며, cost-effective 한 medium-grained 병렬 정보 검색 시스템을 제시하고 있다. 본 검색 시스템은 병렬 모델의 효율을 극대화하는 방안으로 문서 라이브러리를 작은 단위의 클러스터로 세분화하고 검색 시 클러스터 단위로 프로세서에 할당될 수 있게 하여 할당될 작업의 단위를 적절히 중규모화하였을 뿐만 아니라, 각 클러스터마다 독립적인 염색인 파일을 별도로 두어 순위 부여 계산시 통신을 최소화 할 수 있도록 하였다. 또한, 기계 학습 기법을 이용하여 가능한 한 유사한 문서군이 되도록 클러스터링 함으로써 불필요한 크러스터가 검색될 가능성을 최소화하여 성능을 높였다. 본 검색 시스템은 분산메모리 MIMD 구조의 트랜스퓨터에서 구현되었으며, Connection machine에서 사용되는 Stanfill방법과의 비교 실험을 통하여 계층적인 접근법의 성능을 비교, 평가하였다. 그리고 random클러스터링 기법과 비교하여 기계학습을 통한 클러스터링 접근방법이 우수함을 보이고 있다.

  • PDF

PC Cluster-based Parallel Korean Information Retrieval System (PC 클러스터 기반 병렬 한국어 정보검색 시스템)

  • 김진혁;장한국;최참아;류광렬;정상화;권혁철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.160-162
    • /
    • 1999
  • 대용량의 정보를 다루는 정보검색 시스템은 정보 처리 과정에서 디스크 접근 시간이 큰 오버헤드로 작용한다. 본 논문에서는 단일 기계에서 작동하는 정보검색 시스템이 가지는 이러한 문제점을 해결하기 위해 PC 클러스터 기반 정보검색 시스템을 구현하였다. 색인어 간의 동시 등장 빈도 정보를 이용한 Greedy De-clustering 알고리즘으로 클러스터에 색인어 역파일을 병렬 분산하여 저장하고, SCI 기반의 효율적인 통신 시스템을 구축하여 클러스터 노드간의 통신이 원활하게 하였다. 따라서 사용자 질의어를 처리할 때 질의어별로 가져오는 색인어 역파일의 디스크 접근 시간이 감소하는 효과를 얻을 수 있었으며, 기존의 단일 기계에서 수행되는 정보 검색 시스템보다 수행속도가 2.3배 빠른 시스템을 구현하였음을 실험을 통해 확인하였다.

  • PDF

An Efficient Parallel Information Retrieval System using Document Clustering (문서 클러스터링에 의한 효율적인 병렬 정보검색 시스템)

  • Gang, Yu-Gyeong;Ryu, Gwang-Ryeol;Jeong, Sang-Hwa
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.2
    • /
    • pp.157-167
    • /
    • 2001
  • 본 논문은 고품질의 정보를 신속하게 제공할 수 있으면서 가격대 성능비가 우수한 병렬 정보 검색 시스템을 제시하고 있다. 본 검색 시스템은 문서 라이브러리를 여러 개의 클러스터로 세분화하고 검색 시 클러스터 단위로 프로세서에 할당함으로써 작업 단위를 적절한 규모로 하였을 뿐만 아니라, 문서의 점수 계산 시 프로세서 간 통신이 전혀 필요치 않게 하였다. 검색은 1차로 클러스터 레벨에서 관련 클러스터들을 찾는 것으로 시작하여 2차로 관련 클러스터 내에서 실제 문서를 찾는 방식으로 이루어진다. 이러한 계층적인 검색 구조로 인하여 1차 검색 후 여과가 가능하므로 전체적인 검색의 부하를 줄일 수 있다. 또한 문서의 클러스터가 가능한 한 유사한 문서군이 되도록 함으로써 불필요한 클러스터가 검색될 가능성을 최소화하여 성능을 높였다. 본 검색 시스템은 분산메모리 MIMD 구조의 다중 트랜스퓨터 시스템에서 구현되었으며, 실험 결과 무작위적으로 클러스터링한 경우에 비해 유사 문서군으로 클러스터링한 접근 방법이 우수함을 확인하였다.

  • PDF

Dataflow Block Clustering for Parallel Embedded Software Development Environment (병렬 내장형 소프트웨어 개발환경을 위한 데이터 플로우 블록 클러스터링)

  • Cho, Yong-Woo;Kwon, Seong-Nam;Ha, Soon-Hoi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.337-341
    • /
    • 2008
  • 갈수록 복잡해지는 내장형 시스템을 개발함에 있어서 소프트웨어 개발의 중요성은 날로 커지고 있다. 기존 연구에서 소프트웨어 개발 효율을 높이기 위해 소프트웨어의 재사용 가능성을 높이고 병렬성 명세를 용이하게 하고자 중간단계코드(CIC)를 정의하였다. 이 중간단계 코드는 각 태스크의 순수 알고리즘을 기술하는 C형태의 태스크 코드와 그 외의 정보를 포함하는 XML형태의 아키텍쳐 정보 파일로 구성된다. 이 CIC는 사용자가 직접 기술할 수 있고 각종 모델로부터 자동 생성할 수도 있다. 이 논문에서는 후자에 초점을 두고 데이터 플로우 모델에 사용된 블록들을 클러스터링하여 태스크 코드를 생성하는 기법을 제안하였다. 이것을 위해 블록 클러스터링 알고리즘은 주어진 클러스터의 크기로 블록이 묶일 때까지 블록의 수행시간 정보를 고려하여 함수 병렬성을 최대한 보존하며 블록들을 묶어나간다. H.263 코덱 예제를 이용한 실험을 통해 제안하는 방법이 다양한 클러스터의 크기 조건에 대해서 다양한 클러스터링 결과를 제공함을 보였다.

  • PDF