Tabrizi, Haleh;Farhadi, Golnaz;Cioffi, John Matthew;Aldabbagh, Ghadah
ETRI Journal
/
v.38
no.2
/
pp.314-325
/
2016
This paper examines the resource gain that can be obtained from the creation of clusters of nodes in densely populated areas. A single node within each such cluster is designated as a "hotspot"; all other nodes then communicate with a destination node, such as a base station, through such hotspots. We propose a semi-distributed algorithm, referred to as coordinated cognitive tethering (CCT), which clusters all nodes and coordinates hotspots to tether over locally available white spaces. CCT performs the following these steps: (a) groups nodes based on a modified k-means clustering algorithm; (b) assigns white-space spectrum to each cluster based on a distributed graph-coloring approach to maximize spectrum reuse, and (c) allocates physical-layer resources to individual users based on local channel information. Unlike small cells (for example, femtocells and WiFi), this approach does not require any additions to existing infrastructure. In addition to providing parallel service to more users than conventional direct communication in cellular networks, simulation results show that CCT can increase the average battery life of devices by 30%, on average.
Barakkath Nisha, U;Uma Maheswari, N;Venkatesh, R;Yasir Abdullah, R
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.9
/
pp.3515-3538
/
2015
Data accuracy can be increased by detecting and removing the incorrect data generated in wireless sensor networks. By increasing the data accuracy, network lifetime can be increased parallel. Network lifetime or operational time is the time during which WSN is able to fulfill its tasks by using microcontroller with on-chip memory radio transceivers, albeit distributed sensor nodes send summary of their data to their cluster heads, which reduce energy consumption gradually. In this paper a powerful algorithm using proactive fuzzy system is proposed and it is a mixture of fuzzy logic with comparative correlation techniques that ensure high data accuracy by detecting incorrect data in distributed wireless sensor networks. This proposed system is implemented in two phases there, the first phase creates input space partitioning by using robust fuzzy c means clustering and the second phase detects incorrect data and removes it completely. Experimental result makes transparent of combined correlated fuzzy system (CCFS) which detects faulty readings with greater accuracy (99.21%) than the existing one (98.33%) along with low false alarm rate.
Journal of the Korea Society of Computer and Information
/
v.19
no.10
/
pp.1-12
/
2014
This paper implements and improves the performance of high computational subtractive clustering algorithm using a single instruction, multiple data (SIMD) based many-core processor. In addition, this paper implements five different processing element (PE) architectures (PEs=16, 64, 256, 1,024, 4,096) to select an optimal PE architecture for the subtractive clustering algorithm by estimating execution time and energy efficiency. Experimental results using two different medical images and three different resolutions ($128{\times}128$, $256{\times}256$, $512{\times}512$) show that PEs=4,096 achieves the highest performance and energy efficiency for all the cases.
DNN error is small compared to the conventional speech recognition system, DNN is difficult to parallel training, often the amount of calculations, and requires a large amount of data obtained. In this paper, we generate a phoneme unit to estimate the GMM parameters with each phoneme model parameters from the GMM to solve the problem efficiently. And it suggests ways to improve performance through clustering for a specific vocabulary to effectively apply them. To this end, using three types of word speech database was to have a DB build vocabulary model, the noise processing to extract feature with Warner filters were used in the speech recognition experiments. Results using the proposed method showed a 97.9% recognition rate in speech recognition. In this paper, additional studies are needed to improve the problems of improved over fitting.
The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.
In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.750-752
/
1998
본 논문은 고품질의 정보를 신속하게 제공할 수 있으며, cost-effective 한 medium-grained 병렬 정보 검색 시스템을 제시하고 있다. 본 검색 시스템은 병렬 모델의 효율을 극대화하는 방안으로 문서 라이브러리를 작은 단위의 클러스터로 세분화하고 검색 시 클러스터 단위로 프로세서에 할당될 수 있게 하여 할당될 작업의 단위를 적절히 중규모화하였을 뿐만 아니라, 각 클러스터마다 독립적인 염색인 파일을 별도로 두어 순위 부여 계산시 통신을 최소화 할 수 있도록 하였다. 또한, 기계 학습 기법을 이용하여 가능한 한 유사한 문서군이 되도록 클러스터링 함으로써 불필요한 크러스터가 검색될 가능성을 최소화하여 성능을 높였다. 본 검색 시스템은 분산메모리 MIMD 구조의 트랜스퓨터에서 구현되었으며, Connection machine에서 사용되는 Stanfill방법과의 비교 실험을 통하여 계층적인 접근법의 성능을 비교, 평가하였다. 그리고 random클러스터링 기법과 비교하여 기계학습을 통한 클러스터링 접근방법이 우수함을 보이고 있다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.160-162
/
1999
대용량의 정보를 다루는 정보검색 시스템은 정보 처리 과정에서 디스크 접근 시간이 큰 오버헤드로 작용한다. 본 논문에서는 단일 기계에서 작동하는 정보검색 시스템이 가지는 이러한 문제점을 해결하기 위해 PC 클러스터 기반 정보검색 시스템을 구현하였다. 색인어 간의 동시 등장 빈도 정보를 이용한 Greedy De-clustering 알고리즘으로 클러스터에 색인어 역파일을 병렬 분산하여 저장하고, SCI 기반의 효율적인 통신 시스템을 구축하여 클러스터 노드간의 통신이 원활하게 하였다. 따라서 사용자 질의어를 처리할 때 질의어별로 가져오는 색인어 역파일의 디스크 접근 시간이 감소하는 효과를 얻을 수 있었으며, 기존의 단일 기계에서 수행되는 정보 검색 시스템보다 수행속도가 2.3배 빠른 시스템을 구현하였음을 실험을 통해 확인하였다.
본 논문은 고품질의 정보를 신속하게 제공할 수 있으면서 가격대 성능비가 우수한 병렬 정보 검색 시스템을 제시하고 있다. 본 검색 시스템은 문서 라이브러리를 여러 개의 클러스터로 세분화하고 검색 시 클러스터 단위로 프로세서에 할당함으로써 작업 단위를 적절한 규모로 하였을 뿐만 아니라, 문서의 점수 계산 시 프로세서 간 통신이 전혀 필요치 않게 하였다. 검색은 1차로 클러스터 레벨에서 관련 클러스터들을 찾는 것으로 시작하여 2차로 관련 클러스터 내에서 실제 문서를 찾는 방식으로 이루어진다. 이러한 계층적인 검색 구조로 인하여 1차 검색 후 여과가 가능하므로 전체적인 검색의 부하를 줄일 수 있다. 또한 문서의 클러스터가 가능한 한 유사한 문서군이 되도록 함으로써 불필요한 클러스터가 검색될 가능성을 최소화하여 성능을 높였다. 본 검색 시스템은 분산메모리 MIMD 구조의 다중 트랜스퓨터 시스템에서 구현되었으며, 실험 결과 무작위적으로 클러스터링한 경우에 비해 유사 문서군으로 클러스터링한 접근 방법이 우수함을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2008.06b
/
pp.337-341
/
2008
갈수록 복잡해지는 내장형 시스템을 개발함에 있어서 소프트웨어 개발의 중요성은 날로 커지고 있다. 기존 연구에서 소프트웨어 개발 효율을 높이기 위해 소프트웨어의 재사용 가능성을 높이고 병렬성 명세를 용이하게 하고자 중간단계코드(CIC)를 정의하였다. 이 중간단계 코드는 각 태스크의 순수 알고리즘을 기술하는 C형태의 태스크 코드와 그 외의 정보를 포함하는 XML형태의 아키텍쳐 정보 파일로 구성된다. 이 CIC는 사용자가 직접 기술할 수 있고 각종 모델로부터 자동 생성할 수도 있다. 이 논문에서는 후자에 초점을 두고 데이터 플로우 모델에 사용된 블록들을 클러스터링하여 태스크 코드를 생성하는 기법을 제안하였다. 이것을 위해 블록 클러스터링 알고리즘은 주어진 클러스터의 크기로 블록이 묶일 때까지 블록의 수행시간 정보를 고려하여 함수 병렬성을 최대한 보존하며 블록들을 묶어나간다. H.263 코덱 예제를 이용한 실험을 통해 제안하는 방법이 다양한 클러스터의 크기 조건에 대해서 다양한 클러스터링 결과를 제공함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.