In this paper, we propose advanced parallel join algorithm to efficiently process join operation on hypercube systems. This algorithm uses a broadcasting method in processing relation R which is compatible with hypercube structure. Hence, we can present optimized parallel join algorithm for that hypercube structure. The proposed algorithm has a complete solution of two essential problems - load balancing problem and data skew problem - in parallelization of join operation. In order to solve these problems, we made good use of the characteristics of clustering effect in the algorithm. As a result of this, performance is improved on the whole system than existing algorithms. Moreover. new algorithm has an advantage that can implement non-equijoin operation easily which is difficult to be implemented in hash based algorithm. Finally, according to the cost model analysis. this algorithm showed better performance than existing parallel join algorithms.
The Transactions of the Korea Information Processing Society
/
v.6
no.9
/
pp.2294-2304
/
1999
Our research purpose in this paper is to improve the performance of query processing in GIS(Geographic Information System) by enhancing the I/O performance exploiting parallel I/O and efficient disk access. By packing adjacent spatial data, which are very likely to be referenced concurrently, into one block or continuous disk blocks, the number of disk accesses and the disk access overhead for query processing can be decreased, and this eventually leads to the I/O time decrease. So, in this paper, we proposes EPR(Enhanced Parallel R-tree) indexing method which integrates the parallel I/O method of the previous Parallel R-tree method and a packing-based clustering method. The major characteristics of EPR method are as follows. First, EPR method arranges spatial data in the increasing order of proximity by using Hilbert space filling curve, and builds a packed R-tree by bottom-up manner. Second, with packing-based clustering in which arranged spatial data are clustered into continuous disk blocks, EPR method generates spatial data clusters. Third, EPR method distributes EPR index nodes and spatial data clusters on multiple disks through round-robin striping. Experimental results show that EPR method achieves up to 30% or more gains over PR method in query processing speed. In particular, the larger the size of disk blocks is and the smaller the size of spatial data objects is, the better the performance of query processing by EPR method is.
The PC cluster architecture is considered as a cost-effective alternative to the existing supercomputers for realizing a high-performance information retrieval (IR) system. To implement an efficient IR system on a PC cluster, it is essential to achieve maximum parallelism by having the data appropriately distributed to the local hard disks of the PCs in such a way that the disk I/O and the subsequent computation are distributed as evenly as possible to all the PCs. If the terms in the inverted index file can be classified to closely related clusters, the parallelism can be maximized by distributing them to the PCs in an interleaved manner. One of the goals of this research is the development of methods for automatically clustering the terms based on the likelihood of the terms' co-occurrence in the same query. Also, in this paper, we propose a method for duplicate distribution of inverted index records among the PCs to achieve fault-tolerance as well as dynamic load balancing. Experiments with a large corpus revealed the efficiency and effectiveness of our method.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.6
/
pp.1127-1137
/
2022
Cryptographic analysis and decryption technology utilizing the parallel operation of GPU has been studied in the direction of shortening the computation time of the password analysis system. These studies focus on optimizing the code to improve the speed of cryptographic analysis operations on a single GPU or simply increasing the number of GPUs to enhance parallel operations. However, using a large number of GPUs without optimization for data transmission causes longer data transmission latency than using a single GPU and increases the overall computation time of the cryptographic analysis system. In this paper, we investigate GPUDirect RDMA and related technologies for high-performance data processing in deep learning or HPC research fields in GPU clustering environments. In addition, we present a method of designing a high-performance cryptanalysis system using the relevant technologies. Furthermore, based on the suggested system topology, we present a method of implementing a cryptanalysis system using password cracking and GPU reduction. Finally, the performance evaluation results are presented according to demonstration of high-performance technology is applied to the implemented cryptanalysis system, and the expected effects of the proposed system design are shown.
As the size of data increases, it becomes important to identify properties by analyzing big data. In this paper, we propose a k-Means based efficient clustering technique, called MCSKMeans (Multi centroid set k-Means), using distributed parallel processing framework MapReduce. A problem with the k-Means algorithm is that the accuracy of clustering depends on initial centroids created randomly. To alleviate this problem, the MCSK-Means algorithm reduces the dependency of initial centroids using sets consisting of k centroids. In addition, we apply the agglomerative hierarchical clustering technique for creating k centroids from centroids in m centroid sets which are the results of the clustering phase. In this paper, we implemented our MCSK-Means based on the MapReduce framework for processing big data efficiently.
This paper presents a new method for the motion detection of vehicles using hierarchical motion estimation and parallel processing. It captures the road image by using a CMOS sensor. It divides the captured image into small blocks and detects the motion of each block by using a block-matching method which is based on a hierarchical motion estimation and parallel processing for the real-time processing. The parallelism is achieved by using tile pipeline and the data flow technique. The proposed method has been implemented by using an embedded system. The proposed block matching algorithm has been implemented on PLDs(Programmable Logic Device) and clustering algorithm has been implemented by ARM processor. Experimental results show that the proposed system detects the motion of vehicles in real-time.
Transactions of the Korean Society of Mechanical Engineers B
/
v.21
no.8
/
pp.1024-1033
/
1997
The past several years have witnessed an ever-increasing acceptance and adoption of parallel processing, both for high performance scientific computing as well as for more general purpose applications. Furthermore with increasing needs to perform the complex flow calculations in an efficient manner, the use of the message passing model on distributed networks has emerged as an important alternative to the expensive supercomputers. This work attempts to provide a generic framework to enable the parallelization of all CFD-related works using the master-slave model. This framework consists of (1) input geometry, (2) domain decomposition, (3) grid generation, (4) flow computations, (5) flow visualization, and (6) output display as the sequential components, but performs computations for (2) to (5) in parallel on the workstation clustering. The flow computations are parallized by having multiple copies of the flow-code to solve a PDE on different spatial regions on different processors, while their flow data are exchanged across the region boundaries, and the solution is time-stepped. The Parallel Virtual Machine (PVM) is used for distributed communication in this work.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.54
no.6
/
pp.390-395
/
2005
Sunspots are dark areas that grow and decay on the lowest level of the sun that is visible from the Earth. Shot-term predictions of solar activity are essential to help plan missions and to design satellites that will survive for their useful lifetimes. This paper presents a parallel-structure fuzzy system(PSFS) for prediction of sunspot number time series. The PSFS consists of a multiple number of component fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts future data independently based on its past time series data with different embedding dimension and time delay. An embedding dimension determines the number of inputs of each component fuzzy system and a time delay decides the interval of inputs of the time series. According to the embedding dimension and the time delay, the component fuzzy system takes various input-output pairs. The PSFS determines the final predicted value as an average of all the outputs of the component fuzzy systems in order to reduce error accumulation effect.
Software Debugging is the most time consuming and costly process in the software development process. Many techniques have been proposed to isolate different faults in a program thereby creating separate sets of failing program statements. Debugging in parallel is a technique which proposes distribution of a single faulty program segment into many fault focused program slices to be debugged simultaneously by multiple debuggers. In this paper we propose a new technique called Faulty Slice Distribution (FSD) to make parallel debugging more efficient by measuring the time and labor associated with a slice. Using this measure we then distribute these faulty slices evenly among debuggers. For this we propose an algorithm that estimates an optimized group of faulty slices using as a parameter the priority assigned to each slice as computed by value of their complexity. This helps in the efficient merging of two or more slices for distribution among debuggers so that debugging can be performed in parallel. To validate the effectiveness of this proposed technique we explain the process using example.
Journal of Korea Society of Digital Industry and Information Management
/
v.9
no.4
/
pp.59-67
/
2013
Compared to the conventional Hardware-oriented base stations, Software Defined Radio (SDR)-based base station provides various advantages especially in flexibility and expandability. It enables the multimode capability required in 4th-generation (4G) environment which aims at a convergence network of various kinds of communication standards. However, since a single base station processes all data required in various multiple waveforms, the SDR base station faces a problem of data processing speed. In this paper, we propose a new concept of SDR base station system which adopts a parallel processing technology of clustering environment. We implemented a WiMAX system with SDR concept which adopts the Message Passing Interface (MPI) technology which enables the speed-up operations. In order to maximize the efficiency of parallel processing in signal processing, we analyze how the algorithm at each of modules is related to data to be processed. Through the implemented system, we show a drastic improvement in operation time due to parallel processing using the proposed MPI technology. In addition, we demonstrate a feasibility of SDR system for 4G or even beyond-4G as well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.