• Title/Summary/Keyword: parallel clustering

Search Result 105, Processing Time 0.041 seconds

Identification of Fuzzy System Driven to Parallel Genetic Algorithm (병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF

Learning Algorithm using a LVQ and ADALINE (LVQ와 ADALINE을 이용한 학습 알고리듬)

  • 윤석환;민준영;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.47-61
    • /
    • 1996
  • We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.

  • PDF

Investigation of Trend in Virtual Reality-based Workplace Convergence Research: Using Pathfinder Network and Parallel Neighbor Clustering Methodology (가상현실 기반 업무공간 융복합 분야 연구 동향 분석 : 패스파인더 네트워크와 병렬 최근접 이웃 클러스터링 방법론 활용)

  • Ha, Jae Been;Kang, Ju Young
    • The Journal of Information Systems
    • /
    • v.31 no.2
    • /
    • pp.19-43
    • /
    • 2022
  • Purpose Due to the COVID-19 pandemic, many companies are building virtual workplaces based on virtual reality technology. Through this study, we intend to identify the trend of convergence and convergence research between virtual reality technology and work space, and suggest future promising fields based on this. Design/methodology/approach For this purpose, 12,250 bibliographic data of research papers related to Virtual Reality (VR) and Workplace were collected from Scopus from 1982 to 2021. The bibliographic data of the collected papers were analyzed using Text Mining and Pathfinder Network, Parallel Neighbor Clustering, Nearest Neighbor Centrality, and Triangle Betweenness Centrality. Through this, the relationship between keywords by period was identified, and network analysis and visualization work were performed for virtual reality-based workplace research. Findings Through this study, it is expected that the main keyword knowledge structure flow of virtual reality-based workplace convergence research can be identified, and the relationship between keywords can be identified to provide a major measure for designing directions in subsequent studies.

A Massively Parallel Algorithm for Fuzzy Vector Quantization (퍼지 벡터 양자화를 위한 대규모 병렬 알고리즘)

  • Huynh, Luong Van;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.411-418
    • /
    • 2009
  • Vector quantization algorithm based on fuzzy clustering has been widely used in the field of data compression since the use of fuzzy clustering analysis in the early stages of a vector quantization process can make this process less sensitive to its initialization. However, the process of fuzzy clustering is computationally very intensive because of its complex framework for the quantitative formulation of the uncertainty involved in the training vector space. To overcome the computational burden of the process, this paper introduces an array architecture for the implementation of fuzzy vector quantization (FVQ). The arrayarchitecture, which consists of 4,096 processing elements (PEs), provides a computationally efficient solution by employing an effective vector assignment strategy during the clustering process. Experimental results indicatethat the proposed parallel implementation providessignificantly greater performance and efficiency than appropriately scaled alternative array systems. In addition, the proposed parallel implementation provides 1000x greater performance and 100x higher energy efficiency than other implementations using today's ARMand TI DSP processors in the same 130nm technology. These results demonstrate that the proposed parallel implementation shows the potential for improved performance and energy efficiency.

A Parallel I/O System on Workstation Clustering Environment for Irregular Applications (비정형 응용을 위한 워크스테이션 클러스터링 환경에서의 병렬 입출력 시스템)

  • No, Jae-Chun;Park, Sung-Soon;Choudhary, Alok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.5
    • /
    • pp.496-505
    • /
    • 2000
  • Clusters of workstations (COW) are becoming an attractive option for parallel scientific computing, a field formerly reserved to the MPPs, because their cost-performance ratio is usuallybetter than that of comparable MPPS, and their hardware and software can be easily enhanced to thelatest generations. In this paper we present the design and implementation of our runtime library forclusters of workstations, called "Collective I/O Clustering". The library provides a friendlyprogramming model for the I/O of irregular applications on clusters of workstations, being completelyintegrated with the underlying communication and I/O system. In the collective I/O clustering, two I/Oconfigurations are possible. In the first I/O configuration, all processors allocated can act as I/Oservers as well as compute nodes. In the second I/O configuration, only a subset of processors canact as I/O servers, The compression and software caching facilities have been incorporated into thecollective 1/0 clustering to optimize the communication and I/O costs. All the performance results wereobtained on the IBM-SP machine, located at Argonne National Labs.

  • PDF

Gene Sequences Clustering for the Prediction of Functional Domain (기능 도메인 예측을 위한 유전자 서열 클러스터링)

  • Han Sang-Il;Lee Sung-Gun;Hou Bo-Kyeng;Byun Yoon-Sup;Hwang Kyu-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1044-1049
    • /
    • 2006
  • Multiple sequence alignment is a method to compare two or more DNA or protein sequences. Most of multiple sequence alignment tools rely on pairwise alignment and Smith-Waterman algorithm to generate an alignment hierarchy. Therefore, in the existing multiple alignment method as the number of sequences increases, the runtime increases exponentially. In order to remedy this problem, we adopted a parallel processing suffix tree algorithm that is able to search for common subsequences at one time without pairwise alignment. Also, the cross-matching subsequences triggering inexact-matching among the searched common subsequences might be produced. So, the cross-matching masking process was suggested in this paper. To identify the function of the clusters generated by suffix tree clustering, BLAST and CDD (Conserved Domain Database)search were combined with a clustering tool. Our clustering and annotating tool consists of constructing suffix tree, overlapping common subsequences, clustering gene sequences and annotating gene clusters by BLAST and CDD search. The system was successfully evaluated with 36 gene sequences in the pentose phosphate pathway, clustering 10 clusters, finding out representative common subsequences, and finally identifying functional domains by searching CDD database.

A Study on the Number Recognition of using Clustering and Thinning Method (클러스터링 방식과 세선화 기법을 이용한 숫자 인식에 관한 연구)

  • 윤진영;이영섭;임재홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.838-845
    • /
    • 2004
  • After collecting the scanned images of practical identification licenses, it is attained to more accurate recognition of numbers in the identification licenses. As considering the process speed of the preprocess course for recognition, first, it is divided into eight equal parts of the identification license and then, removed the hologram of correspondent noises. It is run parallel template comparison method and teaming method for the number recognition and in order to extract a simple characteristics of the number the clustering method is used. Also, in case of misrecognized number because of external environment by run parallel with the thinning method, similar each numbers is sectioned by unique characteristics. From the results of number recognition, it is confirmed that the recognition rate of numbers is superior to other Studies.

A study on the process of mapping data and conversion software using PC-clustering (PC-clustering을 이용한 매핑자료처리 및 변환소프트웨어에 관한 연구)

  • WhanBo, Taeg-Keun;Lee, Byung-Wook;Park, Hong-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.123-132
    • /
    • 1999
  • With the rapid increases of the amount of data and computing, the parallelization of the computing algorithm becomes necessary more than ever. However the parallelization had been conducted mostly in a super-computer until the rod 1990s, it was not for the general users due to the high price, the complexity of usage, and etc. A new concept for the parallel processing has been emerged in the form of K-clustering form the late 1990s, it becomes an excellent alternative for the applications need high computer power with a relative low cost although the installation and the usage are still difficult to the general users. The mapping algorithms (cut, join, resizing, warping, conversion from raster to vector and vice versa, etc) in GIS are well suited for the parallelization due to the characteristics of the data structure. If those algorithms are manipulated using PC-clustering, the result will be satisfiable in terms of cost and performance since they are processed in real flu with a low cos4 In this paper the tools and the libraries for the parallel processing and PC-clustering we introduced and how those tools and libraries are applied to mapping algorithms in GIS are showed. Parallel programs are developed for the mapping algorithms and the result of the experiments shows that the performance in most algorithms increases almost linearly according to the number of node.

  • PDF

Construction of moving object tracking framework with fuzzy clustering, prediction and Hausdorff distance (퍼지 군집, 예측과 하우스돌프 거리를 이용한 이동물체 추적 프레임워크 구축)

  • 소영성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.128-133
    • /
    • 1998
  • In this paper, we present a parallel framework for tracking moving objects. Parallel framework consists largely of two parts:Search Space Reduction(SSR) and Tracking(TR). SSR is further composed of fuzzy clustering and prediction based on Kalman filter. TR is done by boundarymatching using the Hausdorff distance based on distance transform.

  • PDF