• 제목/요약/키워드: parallel channels

검색결과 204건 처리시간 0.03초

병렬 마이크로 채널 형상에 따른 CFD 유동해석 (CFD Analysis on the Channel Shapes of Parallel Micro-Channels)

  • 최용석;임태우;김유택;김도엽
    • 수산해양교육연구
    • /
    • 제25권5호
    • /
    • pp.1102-1109
    • /
    • 2013
  • An numerical analysis was performed to obtain the design parameters for parallel micro-channels. The parallel micro-channels consist of 10 square channels with a hydraulic diameter of 300 ${\mu}m$ and inlet/outlet manifolds. The channel length is 5mm, 10mm and 40mm respectively. Mass flux was set between 200~600kg/m2s as inlet boundary condition and atmospheric pressure was set as outlet boundary condition. The pressure drop in channels and manifolds were estimated by using the Shah and London correlation and the flow uniformity was represented by the velocity distributions with dimensionless velocity. The results show that the flow uniformity in channels depends on shapes of manifolds, length and mass flux.

크기가 다른 단면을 가진 평행한 사각 유로를 연결하는 협소유로의 맥동유동에 관한 수치해석 (Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Rectangular Channels with Different Cross-section Areas)

  • 서정식;신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.512-519
    • /
    • 2009
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental data. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap was performed. Auto correlation for the axial-flow velocity pattern was presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

크기가 다른 단면을 가진 평행한 두 채널을 연결하는 협소유로의 맥동유동에 관한 수치해석 (Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Channels with Different Cross-section Areas)

  • 서정식;홍성호;신종근;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2810-2815
    • /
    • 2008
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental result. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap is presented. Auto and cross correlation for the axial-flow velocity pattern are presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

  • PDF

사출 금형의 병렬 냉각 채널 설계 방법 (DESIGN OF PARALLEL COOLING CHANNELS IN A PLASTIC INJECTION MOLD)

  • 김현수;정휘권;한병윤;김영만;박형구
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.93-98
    • /
    • 2012
  • The injection molding process is suitable for manufacturing complicated plastic products. As the customer request higher quality products increase, realization of the precise dimensional and shape controls is getting more important. For this purpose it is important to obtain uniform cooling procedure over the whole surface of the high temperature molded plastic. Failure to this may lead to different shrinkage speed, internal stresses and unwanted shape deformations. It is necessary to distribute coolant flow rates to the main channel and to the sub-channels properly to insure uniform cooling process when there are parallel cooling channels. In this study, three-dimensional turbulent flow simulations for representative parallel cooling channels were performed. To insure the intended flow rate to each sub-channels, various shape designs for the channel system were investigated. The results show that as the Reynolds number increases the effect of shape design is more profound. Through the proper flow distribution, uniform cooling effects would be expected.

병렬 채널에서의 단상 유동 압력 강하 특성에 관한 실험 및 수치해석 (Experimental and Numerical Analysis for Single-phase Flow Pressure Drop in Parallel Micro-channels)

  • 최용석;임태우;유삼상;최형식;김환성
    • 수산해양교육연구
    • /
    • 제26권5호
    • /
    • pp.1090-1095
    • /
    • 2014
  • The experimental and numerical studies of the single-phase flow pressure drop in parallel micro-channels were performed. The parallel micro-channels consisted of 15 channels with depth 0.2mm, width 0.45mm and length 60mm. The FC-72 was used as the working fluid and the mass fluxes ranged from 62.8 to $1371.6kg/m^2s$. The numerical analysis was performed iterative calculations to solve governing equations and finds the appropriate value. The experimental data was compared with the numerical data, the results showed good agreement with the numerical data.

평행한 두 사각유로를 연결하는 협소유로내의 난류유동 특성에 관한 대형 와 수치 모사 (Numerical Investigation on Turbulent Flow Characteristics in the Gap connecting with Two parallel Channels using Large Eddy Simulation)

  • 홍성호;서정식;신종근;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.55-60
    • /
    • 2008
  • Turbulent flow characteristics on the gap of two parallel channels are investigated using LES(large eddy simulation) approach. Two parallel channels have the same cross-section area and are connected by the narrow channel named the gap. Turbulent flow near the gap makes the flow pulsation along the streamwise direction of two channels. The flow condition is the Reynolds number of $2.5{\times}10^{-5}$. We compared the predicted results with the previous experimental results and presented the axial mean velocity, turbulent intensities, Reynolds shear stresses and turbulent kinetic energy.

  • PDF

항계내 항로의 해상교통 혼잡도 평가에 관하여 - 울산 신항만의 혼잡도 평가를 기준으로 - (Evaluation of Traffic Congestion in Channels within Harbour Limit -On Channels in Ulsan New Port Development-)

  • 구자윤
    • 한국항만학회지
    • /
    • 제11권2호
    • /
    • pp.173-189
    • /
    • 1997
  • Whether over taking or parallel sailing of two or more vessels is allowable on marine traffic route or not, the traffic congestion due to traffic volume has to be evaluated separately. In Gaduk-sudo, overtaking or parallel sailing is so allowable that the Bumper Model is introduced to evaluated the traffic congestion. But the channels within the habour limit such as the route of Ulsan New Port are so prohibited overtaking or parallel sailing that the traffic congestion has to be evaluated by using theoretical traffic capacity or by traffic simulation. In this paper, the congestion of Southern New Port and Mipo Port was evaluated the congestion by using theoretical traffic capacity and the other area of Ulsan Port by traffic simulation. The incresed traffic volumes on Ulsan Channels according to Ulsan New Port Development in 2011 were evaluated to have no effect with the traffic congestion.

  • PDF

크기가 다른 평행한 두 채널 간의 맥동유동에 관한 수치해석 (Numerical Investigation on the Flow Pulsation of Two Parallel Channels with Different Cross-section Areas)

  • 서정식;신종근;안득균;최영돈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.601-604
    • /
    • 2008
  • The flow pulsation of two parallel channels is investigated using RANS and URANS approaches. The parallel channels are connected with a small gap and have different cross section areas. The ratio of a right side area and a left side area ($A_R$ / $A_L$) is 0.5. Computations are conducted using a CFX code. Turbulence models adopted for RANS are Reynolds stress model and Shear Stress Transport (SST) model. The bulk Reynolds number is 60,000. Predicted results are compared with the experimental result of Lee et al. and show the flow pulsation with the frequency of about 100 Hz at the center of the gap.

  • PDF

병렬 마이크로 채널에서 FC-72의 2상 유동 마찰 압력 강하 예측 (Prediction methods for two-phase flow frictional pressure drop of FC-72 in parallel micro-channels)

  • 최용석;임태우;유삼상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.821-827
    • /
    • 2014
  • 본 연구에서는 FC-72를 작동유체로 사용하여 병렬 마이크로 채널에서의 2상 유동 마찰 압력 강하를 예측하기 위한 실험적 연구를 수행하였다. 병렬 마이크로 채널은 깊이 0.2 mm, 폭 0.45 mm, 길이 60 mm의 15개의 마이크로 채널로 구성되었으며, 실험은 질량유속 $152.2{\sim}584.2kg/m^2s$, 열유속 $7.5{\sim}28.3kW/m^2$ 범위에서 이루어졌다. 실험에서 얻어진 자료는 기존의 마찰 압력 강하를 예측하기 위한 상관식들과 비교 분석하였다. 기존의 상관식은 일반적으로 균질 모델과 분리류 모델을 사용한다. 본 연구에서는 분리류 모델을 사용한 기존의 상관식을 수정하여 새로운 상관식을 제안하였으며, 그 결과 Mean Absolute Error 9.6%내에서 실험 결과를 잘 예측하였다.

병렬 마이크로 채널에서 FC-72의 비등 열전달 특성 (Boiling heat transfer characteristics of FC-72 in parallel micro-channels)

  • 최용석;임태우;유삼상;김환성;최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1032-1038
    • /
    • 2014
  • 본 연구에서는 병렬 마이크로 채널에서 FC-72의 비등 열전달 특성을 파악하기 위한 실험적 연구를 수행하였다. 병렬 마이크로 채널은 깊이 0.2 mm, 폭 0.45 mm, 길이 60 mm의 15개의 마이크로 채널로 구성되었으며, 실험은 열유속 $16.4kW/m^2$$25.6kW/m^2$의 조건에서 수행되었으며, 이때 질량유속 300, 400 그리고 $500kg/m^2s$의 범위에서 이루어졌다. 실험을 통해 측정된 열전달 계수는 낮은 건도에서는 건도가 증가함에 따라 급격하게 감소하며, 일정 건도 이상에서는 일정하게 유지되었다. 본 연구를 통해 마이크로 채널에서 FC-72의 비등 열전달 메커니즘을 확인하였으며, 실험에서 얻어진 열전달 계수는 열전달 계수를 예측하기 위한 기존의 상관식들과 비교 분석하였다.