• 제목/요약/키워드: parabolic shells

검색결과 5건 처리시간 0.016초

Effects of photostrictive actuator and active control of flexible membrane structure

  • Gajbhiye, S.C.;Upadhyay, S.H.;Harsha, S.P.
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.71-83
    • /
    • 2014
  • The purpose of this paper is to investigate the flexible structure of parabolic shell using photostrictive actuators. The analysis is made to know its dynamic behavior and light-induced control forces for coupled parabolic shell. The effects of an actuator location as well as membrane and bending components under the control action have been analyzed considering the approximate spherical model. The parabolic membrane shell accuracy is being mathematically approximated and validated comparing the light induced control forces using approximate equivalent spherical shell model. The parabolic shell with kapton smart material and photostrictive actuators has been used to formulate the governing equation in the transverse direction. The Kirchhoff-Love assumptions are used to obtain the governing equation of shell with actuator. The mechanical membrane forces and bending moments for parabolic thin shell with actuator is used to analyze the dynamic effect. The results show that membrane control action is much more significant than bending control action. Photostrictive actuators oriented along circumferential direction (actuator-2) can give better control effect than actuators placed along longitudinal direction (actuator-1). The slight difference is observed between spherical and parabolic shell for a surface with focal length to the diameter ratio of 1.00 or more than unity. Space applications often have the shape of parabolical shells or shell of revolution, due to their required focusing, aiming, or reflecting performance. The present approach is focused that photostrictive actuators can effectively control the vibration of parabolical membrane shell. Also, the actuator's location plays an important role in defining the control force.

고차전단변형을 고려한 복합적층판 및 쉘구조의 좌굴해석 (Buckling Analysis of Laminated Composite Plate and Shell Structures considering a Higher-Order Shear Deformation)

  • 이원홍;윤석호;한성천
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.3-11
    • /
    • 1997
  • Laminated composite shells exhibit properties comsiderably different from those of the single-layer shell. Thus, to obtain the more accurate solutions to laminated composite shells ptoblems, effects of shear strain should be condidered in analysis of them. A higher-order shear deformation theory requires no shear correction coefficients. This theory is used to determine the buckling loads of elastic shells. The theory accounts for parabolic distribution of the transverse shear through the thickness of the shell and rotary inertia. Exact solutions of simply-supported shells are obtained and the results are compared with the exact solutions of the first-order shear deformation theory, and the classical theory. The present theory predicts the buckling loads more accurately when compared to the first -order and classical theory.

  • PDF

Stability of EG cylindrical shells with shear stresses on a Pasternak foundation

  • Najafov, A.M.;Sofiyev, A.H.;Hui, D.;Karaca, Z.;Kalpakci, V.;Ozcelik, M.
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.453-470
    • /
    • 2014
  • This article is the result of an investigation on the influence of a Pasternak elastic foundation on the stability of exponentially graded (EG) cylindrical shells under hydrostatic pressure, based on the first-order shear deformation theory (FOSDT) considering the shear stresses. The shear stresses shape function is distributed parabolic manner through the shell thickness. The governing equations of EG orthotropic cylindrical shells resting on the Pasternak elastic foundation on the basis of FOSDT are derived in the framework of Donnell-type shell theory. The novelty of present work is to achieve closed-form solutions for critical hydrostatic pressures of EG orthotropic cylindrical shells resting on Pasternak elastic foundation based on FOSDT. The expressions for critical hydrostatic pressures of EG orthotropic cylindrical shells with and without an elastic foundation based on CST are obtained, in special cases. Finally, the effects of Pasternak foundation, shear stresses, orthotropy and heterogeneity on critical hydrostatic pressures, based on FOSDT are investigated.

Shell forms for egg-shaped concrete sludge digesters: A comparative study on structural efficiency

  • Zingoni, A.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.321-336
    • /
    • 2005
  • The structural feasibility of a variety of non-conventional sludge digesters, in the form of thin shells of revolution constructed in concrete, has formed the subject of investigation of a recent programme of research at the University of Cape Town. Such forms are usually known in the literature as "egg-shaped", and the advantages of these over conventional digesters of the wide-cylindrical type are now well-recognised: superior mixing efficiency, less accumulation of deposits at the bottom, easier removal of bottom deposits and surface crust, reduced heat losses, and so forth. With the aim of exploring the structural feasibility of various non-conventional forms for concrete sludge digesters, and making available usable analytical data and practical guidelines for the design of such thin shell structures, a number of theoretical studies have recently been undertaken, and these have covered conical assemblies, spherical assemblies and parabolic ogival configurations. The purpose of the present paper is to bring together the different analytical approaches employed in each of these studies, summarise the main findings in each case, draw comparisons among the various studied configurations with regard to structural efficiency and functional suitability, and make appropriate conclusions and recommendations.

A refined finite element for first-order plate and shell analysis

  • Han, Sung-Cheon;Kanok-Nukulchai, Worsak;Lee, Won-Hong
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.191-213
    • /
    • 2011
  • This paper presents an improved 8-node shell element for the analysis of plates and shells. The finite element, based on a refined first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the different patterns of sampling points for interpolating different components of strains. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Further, a refined first-order shear deformation theory, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. Numerical examples demonstrate that the present element perform better in comparison with other shell elements.