• Title/Summary/Keyword: paper plant

Search Result 5,135, Processing Time 0.03 seconds

The Ages of Fault Activities of the Ilgwang Fault in Southeastern Korea, Inferred by Classification of Geomorphic Surfaces and Trench Survery (지형면 분류 및 트렌치 조사에 의한 일광단층의 단층활동시기 추정)

  • Jang, Ho;Lee, Jin-Han;An, Yun-Seong;Joo, Byeong-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.1 s.22
    • /
    • pp.21-30
    • /
    • 2004
  • The Ilgwang Fault is NNE-striking, elongated 40 Km between Ulsan and Haeundae-ku, Busan in southeastern part of the Korean Peninsula. This paper si mainly concerned about the ages of the fault activities especially in the Quaternary, inferred from classification of geomorphic surfaces and trench excavation for the construction of Singori nuclear power plant. The geomorphic surfaces are classified into Beach and the Alluvial plain, the 10 m a.s.l. Marine terrace(MIS 5a), the 20 m a.s.l. Marine terrace(MIS 5e), the Reworked surface of 45 m a.s.l. Marine terrace(MIS 7 or 9) and the Low relief erosional surface. The Low relief erosional surface is distributed coastal side, the Reworked surface of 45m a.s.l. Marine terrace inland side by the Ilgwang Fault Line as the boundary line. But the former is above 10 m higher in relative height than the latter. The 20 m a.s.l. Marine terrace on the elongation line of the Ilgwang Fault reveals no dislocation. A site was trenched on the straight contact line with $N30^{\circ}E$-striking between the 10 m a.s.l. Marine terrace and the 20 m a.s.l. Marine terrace. Fault line or dislocation was not observable in the trench excavation. Accordingly, the straight contact line is inferred as the ancient shore line of the 10 m a.s.l. Marine terrace. The Ages of the Fault activities are inferred after the formation of the Ichonri formation - before the formation of the 45 m a.s.l. Marine terrace(220 Ka. y. B.P. or 320. Ka. y. B.P.). The Low relief erosional surface was an island above the sea-level during the formation of the 45 m a.s.l. marine terrace in the paleogeography.

  • PDF

Parameter Estimation of Water Balance Analysis Method and Recharge Calculation Using Groundwater Levels (지하수위를 이용한 물수지분석법의 매개변수추정과 함양량산정)

  • An, Jung-Gi;Choi, Mu-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.299-311
    • /
    • 2006
  • In this paper it is outlined the methodology of estimating the parameters of water balance analysis method for calculating recharge, using ground water level rises in monitoring well when values of specific yield of aquifer are not available. This methodology is applied for two monitoring wells of the case study area in northern area of the Jeiu Island. A water balance of soil layer of plant rooting zone is computed on a daily basis in the following manner. Diect runoff is estimated by using SCS method. Potential evapotranspiration calculated with Penman-Monteith equation is multiplied by crop coefficients($K_c$) and water stress coefficient to compute actual evapotranspiration(AET). Daily runoff and AET is subtracted from the rainfall plus the soil water storage of the previous day. Soil water remaining above soil water retention capacity(SWRC) is assumed to be recharge. Parameters such as the SCS curve number, SWRC and Kc are estimated from a linear relationship between water level rise and recharge for rainfall events. The upper threshold value of specific yield($n_m$) at the monitoring well location is derived from the relationship between rainfall and the resulting water level rise. The specific yield($n_c$) and the coefficient of determination ($R^2$) are calculated from a linear relationship between observed water level rise and calculated recharge for the different simulations. A set of parameter values with maximum value of $R^2$ is selected among parameter values with calculated specific yield($n_c$) less than the upper threshold value of specific yield($n_m$). Results applied for two monitoring wells show that the 81% of variance of the observed water level rises are explained by calculated recharge with the estimated parameters. It is shown that the data of groundwater level is useful in estimating the parameter of water balance analysis method for calculating recharge.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Fertility Status in Northeastern Alpine Soils of South Korea with Cultivation of Vegetable Crops (강원도 고랭지 채소 재배지의 토양 비옥도관리 현황과 전망)

  • Yang, Jae-E.;Cho, Byong-Ok;Shin, Young-Oh;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Total upland area for cultivating the vegetable crops in the Alpine soils of Northeastern South Korea has been extending its limit to meet the increasing demand of vegetable food in recent decades. About 70% of these alpine soils are located in over 7% of the slope and most of vegetable crops have been cultivated intensively without practicing the best management systems. Thus, soil erosion and continuous cropping system have degenerated the soil fertility and shown detrimental effects on water quality. We initiated an intensive and extensive investigation to characterize the fertility problems encountered in these uplands. Objectives of this paper were to characterize the fertility status in the Alpine soils cultivated with vegetable crops for many years and to provide the recommendations for adequate soil management measures including fertilization and erosion control. Soils in general have good drainage with textural classes of loam or sandy loam. Their topographical characteristics tended to lead them to shallow plow layers, and the steepness of the terrain created erosion hazard. Of the soils examined, about 11% of uplands over 30% gradient was found in need of an urgent reforestation. A high content of gravel and firm hardness of soil attributed to inhibit the utilization of farm machinery and plant-root development. The average soil pH 5.6 was slightly low relative to pH 5.70 of the national average. Organic matter content was high compared with 2.0% of national average, but decreased with the prolonged cultivation periods. Available $P_2O_5$ concentration was unusually high due to the consequence of over dose application with chemical and organic fertilizers. Exchangeable cations as Ca, Mg, and K were appeared to be decreased in these regions with prolonging the cultivation periods. There were no significant differences in cation exchange capacity (CEC) and electrical conductivity (EC) among locations. Heavy metal contents were mostly lower than the threshold of danger level designated by Soil Environment Conservation Law of South Korea. Results indicated that a proper countermeasure and the best management practice should be immediately implemented to conserve the top soil and fertility in the Alpine regions.

  • PDF

Numerical Simulation of Nonlinear Interaction between Composite Breakwater and Seabed under Irregular Wave Action by olaFlow Model (olaFlow 모델에 의한 불규칙파 작용하 혼성방파제-해저지반의 비선형상호작용에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Jung, Uk Jin;Choi, Goon-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-145
    • /
    • 2019
  • For the design of composite breakwater as representative one of the coastal and harbor structures, it has been widely discussed by the researchers about the relation between the behavior of excess-pore-water pressure inside the rubble mound and seabed caused by the wave load and its structural failure. Recently, the researchers have tried to verify its relation through the numerical simulation technique. The above researches through numerical simulation have been mostly applied by the linear and nonlinear analytic methods, but there have been no researches through the numerical simulation by the strongly nonlinear mutiphase flow analytical method considering wave-breaking phenomena by VOF method and turbulence model by LES method yet. In the preceding research of this study, olaFlow model based on the mutiphase flow analytical method was applied to the nonlinear interaction analysis of regular wave-composite breakwater-seabed. Also, the same numerical techniques as preceding research are utilized for the analysis of irregular wave-composite breakwater-seabed in this study. Through this paper, it is investigated about the horizontal wave pressures, the time variations of excess-pore-water pressure and their frequency spectra, mean flow velocities, mean vorticities, mean turbulent kinetic energies and etc. around the caisson, rubble mound of the composite breakwater and seabed according to the changes of significant wave height and period. From these results, it was found that maximum nondimensional excess-pore water pressure, mean turbulent kinetic energy and mean vorticity come to be large equally on the horizontal plane in front of rubble mound, circulation of inflow around still water level and outflow around seabed is formed in front of rubble caisson.

The Search for Study on the Construction Process and Changes in the Landscape Plants of the Pasanseodang ('파산서당'의 영건과정과 조경식물 변화상 탐색)

  • Joo, Been;Choi, Hayoung;Shin, Sangsup
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.1
    • /
    • pp.48-65
    • /
    • 2018
  • The authors of this paper aim to make a record of the construction process, its symbolic meaning, and the changes in the status of the landscape plants at the Pasanseodang according to the Report on the Pasanseodang written by Park Gyu-hyun in 1874. First, the construction of Samgahun Pavilion, which is located in Myo-ri, Habin-myun, Dalsung-gun, Daegu, took about 90 years and spanned the lifetimes of Park Sungsoo, an 11th-generation descendant of Park Paengnyun (1417~1456) through to Park Kyuhyun, a 14th-generation descendant. It was called the shape of dragon, with its head facing the tail (回龍顧尾形), in feng shui. Second, the village of Pahwoe was founded in 1769, the 45th year of the reign of King Yeongjo, by Park Sungsoo for the purpose of socializing with his friends at his thatched home, and was named after his own courtesy name (Samgahun). Park Kwangseok, the second son of Park Sungsoo, built the sarangchae in 1826 and the anchae in 1869 after his marriage (in 1783). Then, Park Kyuhyun, the grandson of Park Kwangseok, built the pond and planted it with lotus flowers, and built the Hayeopjeong in 1874. The Pasanseodang, as the precursor of the Hayeopjeong, may be related with the name of the hillside region behind Samgahun. Third, a quadrangular-shaped pond with a length of 21m and a width of 15m was also built and planted with lotus flowers. In the center of the pond is a small round island that reflects the world view of the Chosun dynasty, i.e. that the sky is round and the landmass is quadrangular. Meanwhile, the name of the Hayeopjeon reflects the value system of aristocrats who lived a life of leisure and artistic indulgence. They called the eastern room "Yeeyeonhun" (怡燕軒) and the western room "Mongyangjae" (蒙養齋), names which embody their wishes for a good life as a member of the nobility and a bright future for one's descendants. Fourth, in Confucian terms, the authors infer the points of view reflected in the kinds of trees that were planted according to Confucian norms (pine tree, lotus, bamboo), the living philosophy of sustainability (willow), the ideology of seclusion and the search for peace of mind (bamboo), and relief efforts for the poor and a life of practicality (chestnut, oak, wild walnut, lacquer). The authors assert that this way of planting trees was a highly effective design feature of landscape architecture that drew on the locational and symbolic significance of the Seodang. Fifth, the majority of the trees that were initially planted withered and were replaced with different species, except for the locust and lotus, at this point. Nevertheless, a review of the process of construction, symbolic meaning, and original architectural landscape of the Samgahun is of value in demonstrating the extended symbolic meaning of their descendants in terms of the practical loss of the function of the Seodang, the values of Feng Sui (red in the east, white in the west, based on the principles of Feng Sui), the function of repelling evils spirits (kalopanax, trifoliate orange), aesthetic and practical values (sweetbrier, apricot, pear, peach, and oriental oak trees), and the prosperity of the family and the timeless value of honest poverty (silk, crape myrtle, and yew trees).

A Study on the Characteristics of Paridae Nesting Material by Urban Green Area Type (도시녹지 유형별 박새과 둥지 재료 특성 연구)

  • Kim, Kyeong-Tae;Lee, Hyun-Jung;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Wonkyong
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.3
    • /
    • pp.256-264
    • /
    • 2021
  • Rapid urbanization around the world has negatively affected wildlife habitats, including birds. Wild birds settled in the city are adapting to the changed surroundings, and are typically known to make nests using materials that are easy to find around the city. This study was conducted for the purpose of analyzing the nesting materials on the Paridae using artificial bird nests installed in cities. In this study, the researchers established a total of 33 artificial bird nests in urban parks (22) and forests (11) in Cheonan-si, Chungcheongnam-do. Then we collected 4 artificial bird nests in urban parks (18.19%) and 5 in urban forests (45.46%) to compare the characteristics of bird nest materials by the nest, species, and urban green area types. Eight nests, excluding a nest abandoned by a pair of Paridae, were used for the material analysis. The collected nests were dried, and classified into natural materials (vegetable materials, animal materials, moss, and soil) and artificial materials (cotton, paper pieces, plastics, vinyl, and synthetic fibers), and then each nest was weighed. The classification result shows that the portion of moss (50.65%) was the highest in all nests, followed by soil (21.43%), artificial material (13.95%), vegetable material (5.78%), animal material (4.57%), and others (3.59%) in that order. Artificial materials were used in all nests in urban green areas. Moreover, although the Paridae used about 5.16% more vegetable material than the Parus varius, it was not significant (t=2.17, p=0.07). Plant materials and soil were most preferred in urban forests, and moss, animal, and artificial materials were widely used in that order in urban parks. There was a significant difference in the use of vegetable materials between urban parks and urban forests (t=3.07, p<0.05*). In the habitats like urbanized and dry areas, where artificial materials are highly accessible, artificial materials replaced some roles of natural materials. This study is a basic study for the analysis of the types of materials used in artificial bird nests to understand the habitat system of urban ecosystems. It can be used as the basic data for ecological studies and conservation of the Paridae species.

Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method (수액류 측정 데이터베이스: 그래니어(Granier) 센서 열손실탐침법(Heat Dissipation Method)과 열파동법(Heat Pulse Method)을 이용한 수액류 측정)

  • Lee, Minsu;Park, Juhan;Cho, Sungsik;Moon, Minkyu;Ryu, Daun;Lee, Hoontaek;Lee, Hojin;Kim, Sookyung;Kim, Taekyung;Byeon, Siyeon;Jeon, Jihyun;Bhusal, Narayan;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 2020
  • Transpiration is the movement of water into the atmosphere through leaf stomata of plant, and it accounts for more than half of evapotranspiration from the land surface. The measurements of transpiration could be conducted in various ways including eddy covariance and water balance method etc. However, the transpiration measurements of individual trees are necessary to quantify and compare the water use of each species and individual component within stands. For the measurement of the transpiration by individual tree, the thermometric methods such as heat dissipation and heat pulse methods are widely used. However, it is difficult and labor consuming to maintain the transpiration measurements of individual trees in a wide range area and especially for long-term experiment. Therefore, the sharing of sapflow data through database should be useful to promote the studies on transpiration and water balance for large spatial scale. In this paper, we present sap flow database, which have Granier type sap flux data from 18 Korean pine (Pinus koraiensis) since 2011 and 16 (Quercus aliena) since 2013 in Mt.Taehwa Seoul National University forest and 18 needle fir (Abies holophylla), seven (Quercus serrata), three (Carpinus laxiflora and C. cordata each since 2013 in Gwangneung. In addition, the database includes the sapling transpiration of nine species (Prunus sargentii, Larix kaempferii, Quercus accutisima, Pinus densiflora, Fraxinus rhynchophylla, Chamecypans obtuse, P. koraiensis, Betulla platyphylla, A. holophylla, Pinus thunbergii), which were measured using heat pulse method since 2018. We believe this is the first database to share the sapflux data in Rep. of Korea, and we wish our database to be used by other researchers and contribute a variety of researches in this field.

A Comparison between the Reference Evapotranspiration Products for Croplands in Korea: Case Study of 2016-2019 (우리나라 농지의 기준증발산 격자자료 비교평가: 2016-2019년의 사례연구)

  • Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Nari;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1465-1483
    • /
    • 2020
  • Evapotranspiration is a concept that includes the evaporation from soil and the transpiration from the plant leaf. It is an essential factor for monitoring water balance, drought, crop growth, and climate change. Actual evapotranspiration (AET) corresponds to the consumption of water from the land surface and the necessary amount of water for the land surface. Because the AET is derived from multiplying the crop coefficient by the reference evapotranspiration (ET0), an accurate calculation of the ET0 is required for the AET. To date, many efforts have been made for gridded ET0 to provide multiple products now. This study presents a comparison between the ET0 products such as FAO56-PM, LDAPS, PKNU-NMSC, and MODIS to find out which one is more suitable for the local-scale hydrological and agricultural applications in Korea, where the heterogeneity of the land surface is critical. In the experiment for the period between 2016 and 2019, the daily and 8-day products were compared with the in-situ observations by KMA. The analyses according to the station, year, month, and time-series showed that the PKNU-NMSC product with a successful optimization for Korea was superior to the others, yielding stable accuracy irrespective of space and time. Also, this paper showed the intrinsic characteristics of the FAO56-PM, LDAPS, and MODIS ET0 products that could be informative for other researchers.

Gridded Expansion of Forest Flux Observations and Mapping of Daily CO2 Absorption by the Forests in Korea Using Numerical Weather Prediction Data and Satellite Images (국지예보모델과 위성영상을 이용한 극상림 플럭스 관측의 공간연속면 확장 및 우리나라 산림의 일일 탄소흡수능 격자자료 산출)

  • Kim, Gunah;Cho, Jaeil;Kang, Minseok;Lee, Bora;Kim, Eun-Sook;Choi, Chuluong;Lee, Hanlim;Lee, Taeyun;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1449-1463
    • /
    • 2020
  • As recent global warming and climate changes become more serious, the importance of CO2 absorption by forests is increasing to cope with the greenhouse gas issues. According to the UN Framework Convention on Climate Change, it is required to calculate national CO2 absorptions at the local level in a more scientific and rigorous manner. This paper presents the gridded expansion of forest flux observations and mapping of daily CO2 absorption by the forests in Korea using numerical weather prediction data and satellite images. To consider the sensitive daily changes of plant photosynthesis, we built a machine learning model to retrieve the daily RACA (reference amount of CO2 absorption) by referring to the climax forest in Gwangneung and adopted the NIFoS (National Institute of Forest Science) lookup table for the CO2 absorption by forest type and age to produce the daily AACA (actual amount of CO2 absorption) raster data with the spatial variation of the forests in Korea. In the experiment for the 1,095 days between Jan 1, 2013 and Dec 31, 2015, our RACA retrieval model showed high accuracy with a correlation coefficient of 0.948. To achieve the tier 3 daily statistics for AACA, long-term and detailed forest surveying should be combined with the model in the future.