• Title/Summary/Keyword: panel stiffness

Search Result 284, Processing Time 0.029 seconds

RCC frames with ferrocement and fiber reinforced concrete infill panels under reverse cyclic loading

  • Ganesan, N.;Indira, P.V.;Irshad, P.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • An experimental investigation was carried out to study the strength and behavior of reinforced cement concrete (RCC) frames with ferrocement and fiber reinforced concrete infill panel. Seven numbers of $1/4^{th}$ scaled down model of one bay-three storey frames were tested under reverse cyclic loading. Ferrocement infilled frames and fiber reinforced concrete infilled frames with varying volume fraction of reinforcement in infill panels viz; 0.20%, 0.30%, and 0.40% were tested and compared with the bare frame. The experimental results indicate that the strength, stiffness and energy dissipation capacity of infilled frames were considerably improved when compared with the bare frame. In the case of infilled frames with equal volume fraction of reinforcement in infill panels, the strength and stiffness of frames with fiber reinforced concrete infill panels were slightly higher than those with ferrocement infill panels. Increase in volume fraction of reinforcement in the infill panels exhibited only marginal improvement in the strength and behavior of the infilled frames.

Optimal Design of Lightweight High Strength Door with Tailored Blank (합체박판 기술을 적용한 고장도 경량도어 최적 설계)

  • 송세일;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.174-185
    • /
    • 2002
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. Tailored blanks offer the opportunity to decrease door weight, reduce manufacturing costs, and improve door stiffness. Optimization technology is applied to the inner panel of a door which is made by tailored blanks. The design of tailored blanks door starts from an existing door. At first, the hinge reinforcement and inner reinforcement are removed to use tailored blanks technology. The number of parts and the welding lines are determined from intuitions and the structural analysis results of the existing door. Size optimization is carried out to find thickness while the stiffness constraints are satisfied. The door hinge system is optimized using design of experiment approach. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

Sound Insulation Performance of the Foamed Aluminum Sandwich Panel for a Railway Vehicle (발포 알루미늄 샌드위치 패널의 차음성능)

  • Ahn, Yong-Chan;Lee, Joong-Hyuk;Byeon, Jun-Ho;Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Speeding up of railway vehicles requires weight reduction of the vehicle body. However, when the vehicle body is lighter, the sound insulation performance for blocking the noise from the outside is reduced. Aluminum is an important material used in the bodywork of transportation vehicles such as railway vehicles, aircraft, and automobiles. In this study, the bending stiffness and sound insulation performance of foamed aluminum with sandwich structure are investigated experimentally. The transmission loss is measured in accordance with the international standard ASTM E 2249-02. The mass-law deviation is used to evaluate the sound insulation performance per weight. In order to examine the applicability of the foamed aluminum sandwich panel to railway vehicles, the analysis of bending stiffness and an experimental review are carried out at the same time.

Influence of connection detailing on the performance of wall-to-wall vertical connections under cyclic loading

  • Hemamalini, S.;Vidjeapriya, R.
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.437-448
    • /
    • 2020
  • In high rise buildings that utilize precast large panel system for construction, the shear wall provides strength and stiffness during earthquakes. The performance of a wall panel system depends mainly on the type of connection used to transfer the forces from one wall element to another wall element. This paper presents an experimental investigation on different types of construction detailing of the precast wall to wall vertical connections under reverse cyclic loading. One of the commonly used connections in India to connect wall to wall panel is the loop bar connection. Hence for this study, three types of wet connections and one type of dry connection namely: Staggered loop bar connection, Equally spaced loop bar connection, U-Hook connection, and Channel connection respectively were used to connect the precast walls. One third scale model of the wall was used for this study. The main objective of the experimental work is to evaluate the performance of the wall to wall connections in terms of hysteretic behaviour, ultimate load carrying capacity, energy dissipation capacity, stiffness degradation, ductility, viscous damping ratio, and crack pattern. All the connections exhibited similar load carrying capacity. The U-Hook connection exhibited higher ductility and energy dissipation when compared to the other three connections.

Design and Analysis of vehicle Hood using Magnesium Alloy Sheets (마그네슘 합금 판재를 이용한 차량용 후드의 설계 및 해석)

  • Shin H. W.;Yoo H. J.;Yeo D. H.;Shin K. Y.;Koh Y. S.;Choi S. W.;Lee S. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.220-226
    • /
    • 2005
  • To achieve the weight reduction of a vehicle, Magnesium alloys are widely used in automobile parts because of its lightweight characteristics. Magnesium alloys also have advantages in recycling, stiffness, NVH , heat protection. But Magnesium alloy parts are mainly manufactured by diecasting processes, their productivity was not so high compared to by sheet metal working. We are developing vehicle hood using magnesium sheets. In this study we designed magnesium alloy hood which have equivalent mechanical characteristics to steel hood. Using finite element method we decided thickness of magnesium sheets under some design requirements and we changed the shape of hood inner panel and hinge reinforcements. Outer and inner panel thickness was 1.3mm, 1.5mm respectively. Panel dentibility analysis was performed to conform the new magnesium design by nonlinear FEM package. Formability and hemming of Magnesium sheets are the subjects for further study because they have poor stretchability compared to steel sheets.

  • PDF

Structural Analysis of Composite Partition Panel according to Weaving Methods (직조 방법에 따른 복합재 파티션 패널의 구조 해석)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Lee, Jae Jin;Mun, Ji Hun;Kang, Da Kyung;Ahn, Min Su;Lee, Jae Wook
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.140-146
    • /
    • 2020
  • The purpose of this paper is to examine the possibility of weight reduction by changing the partition panel of vehicle from an existing aluminum material to carbon fiber reinforced plastics. Three weaving methods (plain, twill and satin) were used in the manufacture of composite materials, and they were produced and tested to derive their material properties. The analysis model of composite partition panel for torsional conditions was developed and the structural stability and system stiffness were evaluated according to Tsai-Hill failure criteria. With design variables for fiber orientation angles and stacking sequence, evolutional optimal algorithm was performed and as the results, the optimal composite partition panel was designed. In addition, the structural analysis results for strength and specific stiffness were compared with aluminum partition panels and composite partition panels to verify the possibility of weight reduction.

An Experimental Study for the Evaluations of Compressive Performance of Light-Weight Hybrid Wall Panel (경량합성 패널의 압축성능 평가에 관한 실험적 연구)

  • Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.455-462
    • /
    • 2007
  • The purpose of this paper is to evaluate experimentally the compressive performance of horizontal joints for light-weight hybrid panel in-filled with light-weight foamed mortar. The parameters include the presence of light-weight foamed mortar, the specific gravity of light-weight foamed mortar (0.8, 1.2), the finishing materials (light-weight foamed mortar, Oriented Strand Board [OSB], gypsum board), and the fixed shape of the hybrid panel. As the improved details for fixed end, the peak strength and the stiffness of the light-weight hybrid panel are enhanced as follows: 1.07-2.7 times in peak load, 15-24 times in initial stiffness. The peak strength of the light-weight hybrid panel obtained by the test result is in agreement with the calculations, which is the criterion value according to the domestic code.

Experimental Investigation for Flexural Stiffness of Paperboard-stacked Structure

  • Lee, Myung-Hoon;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • Top-to-bottom compression strength of corrugated fiberboard boxes is partly dependent on the load-carrying ability of the central panel areas. The ability of these central areas to resist bending under load will increase the stacking strength of the box. The difference of box compression strengths, among boxes which are made with identical dimensions and fabricated with same components but different flute sizes, is primarily due to difference of the flexural stiffness of the box panels. Top-to-bottom compression strength of a box is accurately predicted by flexural stiffness measurements and the edge crush test of the combined boards. This study was carried out to analyze the flexural stiffness, maximum bending force and maximum deflection for various corrugated fiberboards by experimental investigation. There were significant differences between the machine direction (MD) and the cross-machine direction (CD) of corrugated fiberboards tested. It was about 50% in SW and DW, and $62%{\sim}74%$ in dual-medium corrugated fiberboards(e.g. DM, DMA and DMB), respectively. There were no significant differences of maximum deflection in machine direction among the tested fiberboards but, in cross direction, DM showed the highest value and followed by SW, DMA, DMB and DW in order. For the corrugated fiberboards tested, flexural stiffness in machine direction is about $29%{\sim}48%$ larger than cross direction, and difference of flexural stiffness between the two direction is the lowest in DMA and DMB.

  • PDF

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Bending characteristics of ISB panel with dimple shapes as inner structures (딤플형 내부 구조체를 가진 ISB 판넬의 굽힘 강성 특성)

  • Ahn D.G.;Lee S.H.;Kim J.S.;Moon G.J.;Han G.Y.;Jung C.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.117-118
    • /
    • 2006
  • The objective of this paper is to investigate into bending and failure characteristics of ISB panel with dimple shapes as inner structures. Through three-points bending test, the force-displacement curve and the failure shape are obtained to examine the deformation pattern, characteristic data including maximum load and displacement at the maximum load and failure pattern for the ISB panel. In addition, the influence of design parameters for ISB panel on the bending stiffness and failure mode has been found. From the results of the experiments, it has been shown that bending and failure characteristics of the ISB panel can be controlled by the ratio of radius and the direction of the material.

  • PDF