• Title/Summary/Keyword: panel joint

Search Result 199, Processing Time 0.02 seconds

A Study on the Resistance Welding of Metallic Sandwich Panel : Part 1 - Determination of Process Parameters (저항 용접을 이용한 금속 샌드위치 판재 접합에 관한 연구 : Part 1 - 공정변수의 선정)

  • Lee Sang-Min;Kim Jin-Beom;Na Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.49-54
    • /
    • 2005
  • Inner Structured and Bonded(ISB) panel, a kind of metallic sandwich panel, consists of two thin skin plates bonded to a micro-patterned inner structure. Its overall thickness is $1\~3mm$and it has attractive properties such as ultra-lightweight, high efficiency in stiffness-to-weight and strength-to-weight ratio. In many previous studies, resistance welding, brazing and adhesive bonding are studied for joining the panel. However these methods did not consider productivity, but focused on structural characteristics of joined panels, so that the joining process is very complicated and expensive. In this paper, a new joining process with resistance welding is developed. Curved surface electrodes are used to consider the productivity and the stopper is used between electrodes during welding time to maintain the shape of inner structure. Welding time, gap of electrodes and distance between welding points are selected as the process parameters. By measuring the tensile load with respect to the variation of welding time and gap of electrodes, proper welding conditions are studied. Welding time is proper between 1.5-2.5cycle. If welding time is too long, then inner structures are damaged by overheating. Gap of electrode should be shorter than threshold value fur joint strength, when total thickness of inner structure and skin plate is 3.3mm, the threshold distance is 3.0mm.

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones (특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.

Evaluation of Flexural Behavior of Lightweight Precast Panel with Ultra High Performance Concrete (초고성능 콘크리트를 적용한 경량 프리캐스트 패널의 휨 거동 평가)

  • Kim, Kyoung-Chul;Koh, Kyung-Taek;An, Gi-Hong;Son, Min-Su;Kim, Byung-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.269-275
    • /
    • 2020
  • In this study, flexural tests of precast concrete panels according to the thickness of cross-sectional and the with or not of reinforcement were carried out in order to develop and assess of a lightweight precast concrete panel using ultra high performance concrete. For the test, four panels were fabricated, and consisted of one normal concrete panel and three ultra high performance concrete panels. As a test result, it was found that the plain precast panel using ultra high performance concrete had a lower flexural performance than the reinforced normal concrete panel, regardless of the cross-sectional size. The flexural performance of the hollow-sectional precast panel applying ultra high performance concrete, is improved by 150% compared to that of the reinforced normal concrete panel. That is, through additional performance verification and optimization of the cross-sectional design of the panel, the ultra high performance concrete precast panel can be made lighter. Also, the practical use of lightweight precast panels with ultra high performance concrete can be available through evaluation on shear, joint connection and anchoring, etc.

Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads

  • Rashad, Mohamed;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.717-725
    • /
    • 2018
  • One of the most important design criteria in military tunnels and armoured doors is to resist the blast loads with minimum structural weight. This can be achieved by using steel sandwich panels. In this paper, the nonlinear behaviour of steel sandwich panels, with different core materials: (1) Hollow (no core material); (2) Rigid Polyurethane Foam (RPF); and (3) Vulcanized Rubber (VR) under free air blast loads, was investigated using detailed 3D nonlinear finite element models in Ansys Autodyn. The accuracy of the finite element model proposed was verified using available experimental test data of a similar steel sandwich panel tested. The results show the developed finite element model can be reliably used to simulate the nonlinear behaviour of the steel sandwich panels under free air blast loads. The verified finite element model was used to examine the different parameters of the steel sandwich panel with different core materials. The result shows that the sandwich panel with RPF core material is more efficient than the VR sandwich panel followed by the Hollow sandwich panels. The average maximum displacement of RPF sandwich panel under different ranges of TNT charge (1 kg to 10 kg at a standoff distance of 1 m) is 49% and 53% less than the VR and Hollow sandwich panels, respectively. Detailed empirical design equations were provided to quantify the maximum deformation of the steel sandwich panels with different core materials and core thickness under a different range of blast loads. The developed equations can be used as a guide for engineer to design steel sandwich panels with RPF and VR core material under a different range of free air blast loads.

An Experimental Study on the Elasto-Plastic Behavior of High Strength Column to Beam Welded Connection (고강도강 기둥(SM570) 보 용접접합부의 탄소성거동에 관한 실험적 연구 -스캘럽상세와 패널강성을 중심으로-)

  • Kim, Jong Rak;Kim, Sung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.487-494
    • /
    • 2000
  • This paper intends to propose design information with the result or comparing the deformation capacity with different panel stiffness specimens and estimating the plastic deformation capacity, toughness and strength of welded joint connection according to the different scallop types. The test results of the beam to column unit structure are as follow: the non-scalloped and the low stiffness panel specimen have more desirable result values than the scalloped and the high stiffness one in plastic deformation. Comparing the scallop types shows very unlikely tendency as follows, second cracking occurs at the very edge of scallop in the scalloped specimen otherwise cracking occurs bond area of welded beam flange in the non-scalloped one.

  • PDF

Test of Model Specification in Panel Regression Model with Two Error Components (이원오차성분을 갖는 패널회귀모형의 모형식별검정)

  • Song, Seuck-Heun;Kim, Young-Ji;Hwang, Sun-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.461-479
    • /
    • 2006
  • This paper derives joint and conditional Lagrange multiplier tests based on Double-Length Artificial Regression(DLR) for testing functional form and/or the presence of individual(time) effect in a panel regression model. Small sample properties of these tests are assessed by Monte Carlo study, and comparisons are made with LM tests based on Outer Product Gradient(OPG). The results show that the proposed DLR based LM tests have the most appropriate finite sample performance.

Shear Strength and Hysteretic Behavior of SRC Column to Steel Beam Joints (SRC 기둥-H 형강보 접합부의 전단강도 및 이력거동)

  • Lee, Seung Joon;Kim, Won Ki;Seo, Dong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.277-285
    • /
    • 1997
  • To investigate the shear strength and hysteretic behavior of SRC column to H steel beam joints, seven cruciform specimens were fabricated and tested. The test specimens showed stable hysteresis behavior with a little pinching. The strength decreased with increase in deflection after the speciemens reached at the maximum strength. The shear strength of panel zones increased with increased in the concrete amount of SRC column sections. The shear strength may conservatively be estimated by the sum of shear yielding strength of steel column web, plastic bending strength of steel column flange and ultimate shear strength of concrete in the panel zone.

  • PDF

Position Estimation of the Welding Panels for Sub-assembly line in Shipbuilding by Vision System (시각 장치를 사용한 조선 소조립 라인에서의 용접부재 위치 인식)

  • 노영준;고국원;조형석;윤재웅;전자롬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.719-723
    • /
    • 1997
  • The welding automation in ship manufacturing process,especially in the sub-assembly line is considered to be a difficult job because the welding part is too huge, various, unstructured for a welding robot to weld fully automatically. The weld orocess at the sub-assembly line for ship manufacturing is to joint the various stiffener on the base panel. In order to realize automatic robot weld in sub-assembly line, robot have to equip with the sensing system to recognize the position of the parts. In this research,we developed a vision system to detect the position of base panle for sub-assembly line is shipbuilding process. The vision system is composed of one CCD camera attached on the base of robot, 2-500W halogen lamps for active illumination. In the image processing algorithm,the base panel is represented by two set of lines located at its two corner through hough transform. However, the various noise line caused by highlight,scratches and stiffener,roller in conveyor, and so on is contained in the captured image, this nosie can be eliminated by region segmentation and threshold in hough transform domain. The matching process to recognize the position of weld panel is executed by finding patterns in the Hough transformed domain. The sets of experiments performed in the sub-assembly line show the effectiveness of the proposed algorithm.

  • PDF

Nonlinear Finite Element Analysis for the Precast Concrete Large Panel Subassemblage subjected to Horizontal Force (수평하중을 받는 프리캐스트 콘크리트 대형 판넬 부분구조의 비선형 해석)

  • 박병순;서수연;이원호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.157-162
    • /
    • 1993
  • During earthquakes, the joints provide a principal means for energy dissipation, and these are also responsible for introducing a nonlinear behavior to the overall building system, while large panels remain in the elastic range. In analysis for the precast concrete large panel system, it is difficult to make a general analysis for their behavior because of differences in joint details. Therefore, in case of presence of vertical joints, it is more difficult because of the interaction between the horizontal joints and vertical joints, In this study, a nonlinear finite element analysis is performed using the gap element, friction element, and concrete material model, and the results are compared with the experimental results.

  • PDF