• Title/Summary/Keyword: panel evaluation

Search Result 766, Processing Time 0.03 seconds

Development of a case-based nursing education program using generative artificial intelligence (생성형 인공지능을 활용한 사례 기반 간호 교육 프로그램 개발)

  • Ahn, Jeonghee;Park, Hye Ok
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.29 no.3
    • /
    • pp.234-246
    • /
    • 2023
  • Purpose: This study aimed to develop a case-based nursing education program using generative artificial intelligence and to assess its usability and applicability in nursing curriculums. Methods: The program was developed by following the five steps of the ADDIE model: analysis, design, development, implementation, and evaluation. A panel of five nursing professors served as experts to implement and evaluate the program. Results: Utilizing ChatGPT, six program modules were designed and developed based on experiential learning theory. The experts' evaluations confirmed that the program was suitable for case-based learning, highly usable, and applicable to nursing education. Conclusion: Generative artificial intelligence was identified as a valuable tool for enhancing the effectiveness of case-based learning. This study provides insights and future directions for integrating generative artificial intelligence into nursing education. Further research should be attempted to implement and evaluate this program with nursing students.

A Brief Review of Power Semiconductors for Energy Conversion in Photovoltaic Module Systems (태양광 모듈 시스템의 에너지 변환을 위한 전력 반도체에 관한 리뷰)

  • Hyeong Gi Park;Do Young Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • This study offers a comprehensive evaluation of the role and impact of advanced power semiconductors in solar module systems. Focusing on silicon carbide (SiC) and gallium nitride (GaN) materials, it highlights their superiority over traditional silicon in enhancing system efficiency and reliability. The research underscores the growing industry demand for high-performance semiconductors, driven by global sustainable energy goals. This shift is crucial for overcoming the limitations of conventional solar technology, paving the way for more efficient, economically viable, and environmentally sustainable solar energy solutions. The findings suggest significant potential for these advanced materials in shaping the future of solar power technology.

Evaluation of the Functions and Reliability of an Eco-Friendly Vegetated Soundproof Wall for Climate Benefits

  • Jong-Sung Kim;Young-Hyoo Kwon;Yong-Jo Jung
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • This study aims to develop and commercialize a soundproof wall capable of planting at the urban ecological. The vegetative soundproof wall developed in the study showed highly superb structural test results for sound absorption coefficients and met the quality standards in the sound-absorbing performance test. Its structure is systemized to supply water to soils and plant roots inside the planting basis with rainwater running down the inclined planes near the planting basis in the front of the vegetation panel. It allows for sporadic water supply for about 30 days of drought. The test results show that the plants continued favorable growth and development in leaves, stems, and roots, making the vegetative soundproof plate a product capable of reacting to climate environment changes.

Development of Nondestructive Evaluation System for Internal Quality of Watermelon using Acoustic Wave (음파를 이용한 비파괴 수박 내부품질 판정 시스템 개발)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Gi-Young;Park, Jong-Min
    • Food Science and Preservation
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Watermelons (Citrulus vulgaris Schrad) are usually sorted manually by weight, appearance, and acoustic impulse, so grading of maturity and internal quality is subject to inaccuracies. It was necessary to develop a nondestructive evaluation technique of internal watermelon quality to reduce human error. Thus, acoustic characteristics related to internal quality factors were analyzed. Among these factors, three (ripeness, presence of an internal cavity, and blood-colored flesh) were selected for evaluation. The number of peaks and the sum of peak amplitudes for watermelons with blood-colored flesh were lower than for normal fruits. The portable evaluation system has an impact mechanism, a microphone sensor, a signal processing board, an LCD panel, and a battery. A performance test was conducted in the field. The internal quality evaluation model showed 87% prediction accuracy. Validation was conducted on 72 samples. The accuracy of quality evaluation was 83%. The quality of samples was evaluated by an inspector using conventional methods (hitting the watermelon and listening to the sounds), and then compared with prototype results. The quality evaluation accuracy of the prototype was better than that of the inspector. This nondestructive quality evaluation system could be useful in the field, warehouse, and supermarket

Revision and Evaluation of Korean Outpatient Groups-Korean Medicine (한의 외래환자분류체계 개선 및 평가)

  • Ryu, Jiseon;Lim, Byungmook;Lee, Byungwook;Kim, Changhoon;Han, Chang-Ho
    • The Journal of Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.93-102
    • /
    • 2014
  • Objectives: This study aimed at revising the Korean Out-patient Groups for Korean Medicine (KOPG-OM, version 1.0) based on clinical similarity and resource use, by using the accumulated claims data, and evaluating the validity of the revised classification system. Methods: A clinical specialist panel involving 19 specialists from 8 Korean medicine (KM) specialty areas reviewed the classification tree, diagnosis groups and procedure groups in terms of clinical similarity. Several models of outpatient grouping were formulated, with the validity of each tested based on the $R^2$ coefficient of determination for the treatment costs of all visits. To add age splits, the variances of treatment costs by age groups were also analyzed. These statistical analyses were performed using KM claims data of National Health Insurance from 2010 to 2012. Results: The classification tree designed via panel discussions was used to allocate outpatient cases to 26 diagnosis groups, with cases involving procedures such as acupuncture, moxibustion and cupping, then allocated to 9 procedure groups in each diagnosis group. The cases without procedures were categorized into the visit index - medication group. This process resulted in 298 outpatient groups. The $R^2$ values for treatment costs of all visits ranged from 0.38 to 0.69 depending on the providers' types. Conclusions: The revised model of KOPG-KM has a higher validity for outpatient classification than the current system and can provide better management of the costs of outpatient care in KM.

Development of Performance Measures Based on Nursing Process for Oxygen Therapy and Airway Suctioning (간호과정 적용 평가도구 개발 -산소요법과 흡인간호를 중심으로-)

  • Kim, Keum Soon;Choi, Yun Kyoung;Lee, Jung Lim;Ahn, Jung Won;Lee, So Lim;Choi, Won Ja;Kim, Eul Soon
    • Journal of Korean Clinical Nursing Research
    • /
    • v.19 no.1
    • /
    • pp.1-19
    • /
    • 2013
  • Purpose: This study was conducted to develop standards to ensure nursing process-based care of oxygen therapy and airway suctioning and to develop a performance measurement tool to evaluate the care applied according to the standards, and finally to determine validity of the standards and the tool. Methods: The standards and the tool were reviewed by a panel of experts and refined based on the panel's suggestions. Validity of the standards and the tool were examined through surveying a total of 366 hospital nurses. Results: The mean validity scores of the performance measurement standards and the tool were 3.58 and 3.55, respectively, out of 4.00. So the performance measurement standards and the tool in this study were found to be acceptable in evaluating quality of nursing care provided at patient admission and discharge. Conclusion: This result indicates that the performance measurement standards and the tool developed in this study are valid instruments to monitor and improve quality of nursing care for oxygen therapy and airway suctioning.

Development of Aircap Wall Module through the Lamination of Aircap (에어캡 적층을 통한 에어캡 벽 모듈 개발)

  • Kim, Kyung Soo;Seo, Jang Hoo;Kim, Yong Seong;Lee, Haeng Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.504-514
    • /
    • 2017
  • The insulation performance of aircaps has been recognized and various studies regarding the aircap as a solution to increased building energy consumption are being carried out. However, the aircap is not durable and therefore it cannot play the role of an independent finishing material. Accordingly, the purpose of this study is to suggest an aircap wall module with improved durability through the lamination of the aircap and verify its effectiveness by evaluating its energy saving performance for lighting and air conditioning through a full-scale testbed. The conclusions of this study are as follows. 1) The aircap wall module featuring a laminated aircap that is being proposed in this study can save lighting energy due to the permeability of the aircap in comparison to previous insulating materials. 2) The aircap wall module with a laminated aircap is effective in improving heating and air-conditioning energy saving when it is more than 15 cm-thick during summer and winter in comparison to a 5 cm-thick prefabricated panel. 3) The aircap wall module featuring a laminated aircap is effective in improving lighting and heating and air-conditioning energy saving when it is 10 cm- and 5 cm-thick during summer and winter, respectively, in comparison to a 5 cm-thick prefabricated panel.

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

A study on the analysis of energy performance for zero-energy building of rural village hall - Focused on the Jung Juk 4-le village hall - (농촌 마을회관 제로에너지 건축물 구축을 위한 에너지 성능 분석 연구 - 충남 태안군 정죽4리 마을회관을 중심으로 -)

  • Park, Mi-Lan;Choi, Jeong-Man;Lee, Jeong-Hun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we survey the 2 buildings at the Central 1 and 8 buildings at the Central 2, which are divided by each climate region in the rural regions. Major heat loss factors are 47% loss of the outer shell including outer wall, roof, and bottom, 30% loss through window, and 23% loss through crevice wind. We analyze the energy simulation of ECO2 program to construct a zero energy building regarding village hall located in Jung Juk 4-le at Centeral 2. We simulate the primary energy requirement regarding village hall and the simulated results show the $265.3kWh/m^2{\cdot}a$ and it may estimate '2' energy efficiency grade. The energy requirement regarding village hall is the $183.2kWh/m^2{\cdot}a$ when the passive technology are applied in village hall. We research total amount of energy requirement in village hall when the passive and active technologies such as solar cell with 3kW and solar thermal with $20m^2$, geothermal power with 17.5kW. The simulated results show the improved energy efficiency certification grade with $1^{{+}{+}{+}}$ due to the reduced primary energy requirement with 73% when passive technology including 3kW of solar panel is applied and the energy independence rate is 54%, which is estimated to be 4th grade of zero energy buildings. The order of energy consumption are solar panel, solar thermal, and geothermal power under applied passive technology in the building. In order to expand the zero energy building, it is necessary to introduce the zero energy evaluation system in the rural region.

Comparison of Noise Power Spectrum in Measurements by Using International Electro-technical Commission Standard Devices in Indirect Digital Radiography (간접평판형 검출기에서 국제전자기술위원회 기준을 통한 잡음전력스펙트럼 비교 연구)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Kim, Ki-Won;Kwon, Kyung-Tae;Jung, Jae-Yong;Son, Jin-Hyun;Kim, Hyun-Soo
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.457-462
    • /
    • 2018
  • The purpose of this study was to compare image quality of indirect digital radiography (IDR) system using the International Electro-technical Commission standard (IEC 62220-1), and to suggest the analysis of noise power spectrum (NPS) which were applied to IEC 62220-1 in medical imaging. In this study, Pixium 4600 (Trixell, France) which is indirect flat panel detector (FPD) was used. The size of image receptor (IR) is $7{\times}17$ inch (matrix $3001{\times}3001$) which performed 14bit processing and pixel pitch is $143{\mu}m$. In IEC standard, NPS evaluation were applied to RQA3, RQA5, RQA7 and RQA9. Because of different radiation quality, each region of interesting (ROI) were compared. The results of NPS indicated up to $3.5mm^{-1}$ including low Nyquist frequency. RQA5 indicated the lowest NPS and the others indicated higher NPS results relatively. NPS result of ROI a38 was higher than ROI a92 and this result indicated that there are more noise in left (cathode) than right (anode). This study were to evaluate NPS by using different radiation quality and setting the each ROI, and to suggest the quantitative methods of measuring NPS.