• Title/Summary/Keyword: panel contribution method

Search Result 38, Processing Time 0.027 seconds

패널 기여도 분석에 의한 승용차의 실내 소음 저감 (Interior Noise Reduction of a Passenger Car using Panel Contribution Analysis)

  • 이두호;김태정
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.785-794
    • /
    • 1999
  • The panel contribution analysis to reduce interior booming noise of a passenger car is carried out using both experimental method and numerical one. The accelerations of panels are measured on the outer surface of car body during operation. The acoustic characteristic of cavity is represented by two different ways. One is the acoustic transfer function obtained by experiment with reciprocal manner. The other is the boundary element model and numerical results of the model are calculated using SYSNOISE. The results from numerical method show more good agreement with measured sound pressure levels than the experimental one. Contributions of panels for interior noise are ranked and structure of the car is reinforced according to the results, which shows that the panel contribution analysis is a powerful tool to lessen structure-borne noise of passenger vehicle.

  • PDF

전달 경로 분석과 패널 기여도 분석을 이용한 휠로더의 실내소음 저감에 관한 연구 (Interior Noise Reduction of Wheel Loader Using Transfer Path Analysis and Panel Contribution Analysis)

  • 김보용;신창우;정원태;박성용;장한기;김성재;강연준
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.805-815
    • /
    • 2008
  • Transfer path analysis(TPA) and panel contribution analysis(PCA) have been used widely to reduce interior noise of mechanical systems. TPA enables us to decompose interior noise into air-borne and structure-borne noises and estimate the path contribution of noise sources. PCA is also used to identify the noise contribution of each sub-panel in vibro-acoustic systems. In this paper, TPA and PCA are applied to wheel loader, one of the heavy construction equipments. Firstly, TPA for air-borne noise is conducted to estimate the contribution of air-borne sources using pressure transfer function. Thereafter, TPA for structure -borne noise is employed to verify the results of air-borne source quantification through the synthesis of two results. Secondly, PCA is performed by both TPA using pressure transfer function between panels inside the cabin and boundry element method(BEM) for the cabin of wheel loader with various boundary conditions. As a results, it was found that TPA conducted by experiments and PCA accomplished by both experiments and BEM are very effective methods in analyzing the path and contribution of the noises for reducing an interior noise level in the wheel loader system.

한국 제조산업의 IT투자 대비 경제적 효과 실증분석 (Empirical Analysis for Korean Manufacturing Firm's IT Investment Effect to Economic Performance)

  • 고중걸;한현수
    • 한국경영과학회지
    • /
    • 제30권4호
    • /
    • pp.15-25
    • /
    • 2005
  • As implied by the terms of IT productivity Paradox, measuring the Information technology contribution to economic performance has been one of the challenging issues to both policy makers and business professionals. As such, diverse attempts with sophisticate analyses have been reported in the literature to analyze the effect of IT contributions. In this paper, we follow Growth Accounting Method to measure the IT contribution effect to manufacturing firm's economic performance in Korea. Various regression methods and statistical analyses are applied with fourteen years of industry Panel data. Using the Cobb-Douglas function, time lag analysis is made to understand IT effect to economic growth. Instead of capturing data from individual firm, industry level data from the National Statistics Bureau is used for IT capital, non-IT capital, and so on. Statistical analysis following the panel unit test and Panel co-integration test was performed to reveal the exact effect of IT contribution to economic performance. Empirical testing results for non-stationary nature of IT investment effect are reported as well as IT contribution to manufacturing industry's economic performance.

Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method

  • Yas, M.H.;Aragh, B. Sobhani;Heshmati, M.
    • Structural Engineering and Mechanics
    • /
    • 제37권5호
    • /
    • pp.529-542
    • /
    • 2011
  • Three dimensional solutions for free vibrations analysis of functionally graded fiber reinforced cylindrical panel are presented, using differential quadrature method (DQM). The orthotropic panel is simply supported at the edges and is assumed to have an arbitrary variation of reinforcement volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary condition are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical panel and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced composite panel due to the reduction in spatial mismatch of material properties.

고속철도차량용 알루미늄 압출재의 차음성능에 대한 폼 충전효과 (Sound-Insulation Performance of Aluminum Extruded Panel by Charging Foam in a High-speed Train)

  • 이중혁;박인석;김석현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.582-585
    • /
    • 2012
  • The aluminum extruded panel used for a high speed train shows the largest contribution to sound insulation performance of the train body. However, comparing with the flat panel having the same weight, the transmission loss falls sharply in the local resonance frequency band. Such fall of transmission loss can be improved by increasing the damping of local resonance. This study examines the charging effect of an urethane foam on the aluminum extruded panel of a high speed train. We charged the urethane foam with different mass density and in different way in the core part of the extruded panel. We measure the transmission loss and compare the sound insulation performance according to the density and charging method. Finally, Improvement effect of the transmission loss is compared and analysed in aspect of weight increment.

  • PDF

회전체 진동으로 인한 판넬 방사소음의 실험적 기여도 분석 (An Experimental Analysis of the Contributions to the Radiated Noise due to Panel Vibration of a Rotational Machine)

  • 국형석;허승진;고강호
    • 한국소음진동공학회논문집
    • /
    • 제13권2호
    • /
    • pp.126-131
    • /
    • 2003
  • This study is concerned with the reduction of noise radiation by an industrial fan unit. First, spectral decomposition method is used to decompose the spectrogram obtained in experiments into source function and noise transfer function, and then major noise generation sources are investigated. Among the noise sources involved in the fan unit. this article is focused on the noise source due to vibration of panels of the unit housing. It is shown here that noise radiation associated with the panel vibration can be as significant in some frequency ranges as that associated with other noise sources such as aeroacoustic fan noise.

콘크리트 기둥-강재 보 외부 접합부의 내진성능(II 강도 및 변형) (Seismic Response of Exterior RC Column-to-Steel Beam Connections (II. Strength and Deformation))

  • 조순호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.283-289
    • /
    • 2000
  • The panel shear and bearing strengths determining the seismic resistance of reinforced concrete column-to-steel beam connections are predicted by various methods for four previously tested exterior beam-column joints. The analytical approach to model the joint deformation is also examined. Several analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a fairly simple connection model in the commercial packages such as Drain2dx and IDARC. The strength prediction results indicated that the ASCE method with the modifcation of the comprssion strut contribution is th most accurate. It is also considered that the analytical model presented including the joint deformation can be used for the overall analysis

  • PDF

공조기기 판넬 진동으로 인한 방사소음의 실험적 기여도 분석 (An Experimental Analysis of the Contributions to the Radiated Noise due to Panel Vibration in a Fan Unit)

  • 국형석;허승진;고강호;이재형;홍석인;김지영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.192-197
    • /
    • 2001
  • This study is concerned with the reduction of noise radiation by an industrial fan unit. Among the noise sources involved in the fan unit, this article is focused on the noise source due to vibration of panels of the unit housing. It is shown here that noise radiation associated with the panel vibration can be as significant in some frequency ranges as that associated with other noise sources such as aeroacoustic fan noise.

  • PDF

A Study on Optimal Design of Panel Shape of a Body Structure for Reduction of Interior Noise

  • Kim, Hyo-Sig;Yoon, Seong-Ho
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.694-698
    • /
    • 2006
  • This paper presents an optimal design process using beads on a body panel to improve interior noise of a passenger vehicle. Except modification of structural members, it is difficult to find effective countermeasures that can work for the intermediate frequency range from 100 Hz to 300 Hz which lies between the booming and low medium frequency. In this study, it is a major goal to find additional counter-measures for this intermediate frequency range by performing optimal design of beads on body panels. The proposed method for design optimization consists of 4 sub-steps, that is, a) problem definition, b) cause analysis, c) countermeasure development and d) validation. The objective function is minimization of interior noise level. The major design variables are the geometrical shape of a bead and combination of beads on the critical panels. Sensitivity analysis and optimization are performed according to the predefined process for an optimal design. It is verified that the proposed design decreases the level of noise transfer function above 5 dB.

  • PDF

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.