• Title/Summary/Keyword: pancreatic enzyme

Search Result 124, Processing Time 0.017 seconds

Bioconversion of nutrient and phytoestrogen constituents during the solid-state fermentation of soybeans by mycelia of Tricholoma matsutake (송이버섯 균사체를 이용한 대두 고체발효 중 영양성분과 식물성 에스트로겐 성분의 생물전환)

  • Hee Yul Lee;Kye Man Cho;Ok Soo Joo
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1012-1028
    • /
    • 2023
  • The findings of this study confirmed the alteration of β-glucosidase activity, nutritional constituents, isoflavones, antioxidant activities, and digestive enzyme inhibition activities in soybeans during solid-state fermentation times with mycelia of Tricholoma matsutake. After nine days, the highest activity level was observed for β-glucosidase (3.90 to 38.89 unit/g) and aglycones (163.03 to 1,074.28 ㎍/g). The sum of isoflavones showed a significant decrease (3,489.41 to 1,325.66 ㎍/g) along with glycosides (2,753.87 to 212.43 ㎍/g) for fermentation, while fatty acids showed a slight increase and amino acids showed a marked increase. Total phenolic and flavonoid contents showed a corresponding increase according to fermentation times (5.58 to 15.09 GAE mg/g; 0.36 to 1.58 RE mg/g). Antioxidant and enzyme inhibition activities also increased; in particular, the highest level of scavenging activities was observed for ABTS (up 60.13 to 82.08%), followed by DPPH (up 63.92% to 71.98%) and hydroxyl (up 36.01 to 52.02%) radicals. Of particular interest, α-glucosidase (6.69 to 83.49%) and pancreatic lipase inhibition (1.22 to 77.43%) showed a marked increase. These results demonstrated that fermentation of soybeans with the mycelia of T. matsutake enhanced the nutritional and functional constituents, and the biological activities of soybeans. Thus, this fermentation technology can be used to produce a novel functional materials from soybeans.

Lipase-Inhibitory and Anti-Oxidative Activity of the Methanol Extract and the Powder of Phellinus linteus (상황버섯 자실체 메탄올 추출물과 분말의 지방소화효소 억제 및 항산화 활성)

  • Kim, Ji-Hyun;Son, In-Suk;Kim, Jong-Sang;Kim, Ki-Hoon;Kwon, Chong-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.2
    • /
    • pp.154-161
    • /
    • 2008
  • Phellinus linteus (PL) has been known to exhibit potent biological activity. The present study was designed to investigate lipase-inhibitory and anti-oxidative activity of the methanol extract and the powder of PL fruiting body. The methanol extract of PL appeared to have the inhibitory activity against pancreatic lipase with an $IC_{50}$ value of $36.3\;{\mu}g/mL$, and the scavenging activity of DPPH radical with an $IC_{50}$ value of $20.1\;{\mu}g/mL$, which was similar to that of vitamin C ($IC_{50}\;18.3\;{\mu}g/mL$). To investigate the lipase-inhibitory and anti-oxidative effect of PL on animal, Sprague-Dawley rats were fed with high-fat diet supplemented with either 2% or 5% PL powder for 8 weeks. Total food intake was significantly increased, but body weight was not changed by PL powder supplementation. However, fecal fat excretion of the experimental groups fed with the PL powder were higher than that of the control group. PL powder showed a decrease in the plasma total cholesterol, LDL-cholesterol, and the hepatic total cholesterol levels. The anti-oxidative enzyme activities were also affected by PL supplementation. Glutathione peroxidase (GSH-Px) in the plasma and liver were significantly increased by 98% and 46% in the 2% PL group, and 99% and 32% in the 5% PL group, respectively. Total superoxide dismutase (T-SOD) activity was not affected by PL supplementation. DNA damage was measured by the comet assay in the lymphocytes collected after 2 weeks, 4 weeks, and 8 weeks of feeding PL supplemented diet. Lymphocyte DNA damage was decreased in the PL supplemented group. Furthermore, PL feeding enhanced the resistance to lymphocyte DNA damage caused by an oxidant challenge with $H_2O_2$.

Post-Hatching Development of Digestive Organs, Intestinal Digestive Enzymes and Hepatic Antioxidant Defense System in White Leghorn Chicks (White Leghorn Chick의 초기 성장단계에서 소화기관의 발달, 소장의 소화 효소 및 간 조직의 항산화 방어작용)

  • Kim, Min-Jeong;Lee, Joo-Hyun;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • We aimed to investigate the age-dependent development of digestive organs, intestinal enzymes, and hepatic antioxidant defense system in White Leghorn chicks aged 0, 3, 7, 14, and 21 days. Body weight (BW) did not significantly change between days 0 and 7 but significantly increased (P<0.05) after day 7. The relative liver weight (g/100 g of BW) was significantly lower at day 0 than at the other ages but markedly increased at days 3 and 7 (P<0.05). The relative pancreatic weight changed similar to the change in liver weight, with the maximum development at 7 days (P<0.05). The relative intestinal and mucosal tissue weights increased rapidly after hatching (P<0.05), with the maximum growth at 7 days. Furthermore, maltase and sucrase activities were significantly higher at day 3 than at day 0 (P<0.05). Leucine aminopeptidase activity was high at day 0 and remained constant as age increased. Superoxide dismutase and glutathione S-transferase activities in the liver were the lowest at day 0 but significantly increased after 7 days (P<0.05). Glutathione peroxidase activity increased significantly after day 14 compared with that at days 0 and 7 (P<0.05). Lipid peroxidation was not affected by age. In conclusion, the digestive organ weights and hydrolase activity of chicks increased rapidly during the first 3 or 7 days post-hatching. Hepatic antioxidant enzyme activity increased simultaneously with the increase in digestive organ weights, after 7 days.

EFFECT OF OCTANOL, THE GAP JUNCTION BLOCKER, ON THE REGULATION OF FLUID SECRETION AND INTRACELLULAR CALCIUM CONCENTRATION IN SALIVARY ACINAR CELLS (흰쥐 악하선 세포에서 gap junction 봉쇄제인 octanol이 타액분비 및 세포내 $Ca^{2+}$ 농도 조절에 미치는 영향)

  • Lee, Ju-Seok;Seo, Jeong-Taeg;Lee, Syng-Il;Lee, Jong-Gap;Sohn, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.399-415
    • /
    • 1999
  • From bacteria to mammalian cells, one of the most important mediators of intracellular signal transduction mechanisms which regulate a variety of intracellular processes is free calcium. In salivary acinar cells, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$) is essential for the salivary secretion induced by parasympathetic stimulation. However, in addition to $[Ca^{2+}]_i$, gap junctions which couple individual cells electrically and chemically have also been reported to regulate enzyme secretion in pancreatic acinar cells. Since the plasma membrane of salivary acinar cells has a high density of gap junctions, and these cells are electrically and chemically coupled with each other, gap junctions may modulate the secretory function of salivary glands. In this respect, I planned to investigate the role of gap junctions in the modulation of salivary secretion and $[Ca^{2+}]_i$, using mandibular salivary glands of rats. In order to measure the salivary flow rate, fluid was collected from the cannulated duct of the isolated perfused rat mandibular glands at 2 min intervals. $[Ca^{2+}]_i$, was measured from the cells loaded with fura-2 by spectrofluorometry. The results obtained were as follows: 1. CCh-induced salivary secretion was reversibly inhibited by 1 mM octanol, a gap junction blocker. 2. CCh-induced increase in $[Ca^{2+}]_i$, was also reversed by the application of 1 mM octanol. 3. Octanol did not block the initial increase in $[Ca^{2+}]_i$ caused by CCh, which suggested that the reduction of $[Ca^{2+}]_i$, caused by gap junction blockade was not resulted from the inhibition of $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores. 4. Addition of octanol during stimulation with $1{\mu}M$ thapsigargin, a potent microsomal ATPase inhibitor, reduced $[Ca^{2+}]_i$, to the basal level. This suggested that inhibition of gap junction permeability closed plasma membrane $Ca^{2+}$ channels. 5. 2,5-di-tert-butyl-1,4-benzohydroquinone (TBQ) generated $[Ca^{2+}]_i$ oscillations resulting from periodic influx of $Ca^{2+}$ via plasma membrane. The TBQ-induced $[Ca^{2+}]_i$ oscillations were stopped by the application of 1mM octanol which implicated that gap junctions modulate the permeability of plasma membrane $Ca^{2+}$ channels. 6. Glycyrrhetinic acid, another well known gap junction blocker, also inhibited CCh-induced salivary secretion from rat mandibular glands. These results suggested that gap junctions play an important role in the modulation of fluid secretion from the rat mandibular glands and this was probably due to the inhibition of $Ca^{2+}$ influx through the plasma membrane $Ca^{2+}$ channels.

  • PDF