• Title/Summary/Keyword: pancreatic cancer cell

Search Result 103, Processing Time 0.023 seconds

Establishment of a Pancreatic Cancer Stem Cell Model Using the SW1990 Human Pancreatic Cancer Cell Line in Nude Mice

  • Pan, Yan;Gao, Song;Hua, Yong-Qiang;Liu, Lu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.437-442
    • /
    • 2015
  • Aim: To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. Materials and Methods: To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of $125mm^3$, they treated with gemcitabine at a dose of 50mg/kg by intraperitoneal injection of 0.2ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. Results: This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). Conclusions: The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.

Juniperus chinensis extract induces apoptosis via reaction oxygen species (ROS) generation in human pancreatic cancer cell lines

  • Go, Boram;Han, Song-I;Lee, Jungwhoi;Kim, Da-Hye;Kim, Chang-Sook;Kim, Jae Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.457-462
    • /
    • 2020
  • Pancreatic cancer is among the most difficult-to-treat tumors. More than half of patients with this cancer have very few symptoms at the early stages, allowing the development of distant metastases and resistance to cancer treatment. In this study, we found that Juniperus chinensis extract (JCX) decreased the cell viability and migration activity of PANC-1 and SNU-213 pancreatic cancer cells in a dose-dependent manner. JCX increased caspase-3 activation and generation of reactive oxygen species (ROS). N-acetylcysteine treatment blocked JCX-induced ROS generation and the negative effects on pancreatic cancer cell viability. In addition, JCX down-regulated the levels of phospho-focal adhesion kinase (p-FAK) and phospho-extracellular signal-regulated kinase (p-ERK). Together, these results indicate that JCX induces apoptosis in human pancreatic cancer cell lines through ROS production, downregulating FAK/ERK signaling and activating caspase-3. We propose that JCX-derived compounds represent candidates for the development of alternative medicines for the treatment of pancreatic cancer.

Synergism of Cytotoxicity Effects of Triptolide and Artesunate Combination Treatment in Pancreatic Cancer Cell Lines

  • Liu, Yao;Cui, Yun-Fu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5243-5248
    • /
    • 2013
  • Background: Triptolide, extracted from the herb Tripteryglum wilfordii Hook.f that has long been used as a natural medicine in China, has attracted much interest for its anti-cancer effects against some kinds of tumours in recent years. Artesunate, extracted from the Chinese herb Artemisia annua, has proven to be effective and safe as an anti-malarial drug that possesses anticancer potential. The present study attempted to clarify if triptolide enhances artesunate-induced cytotoxicity in pancreatic cancer cell lines in vitro and in vivo. Methods: In vitro, to test synergic actions, cell viability and apoptosis were analyzed after treatment of pancreatic cancer cell lines with the two agents singly or in combination. The molecular mechanisms of apoptotic effects were also explored using qRT-PCR and Western blotting. In vivo, a tumor xenograft model was established in nude mice, for assessment of inhibitory effects of triptolide and artesunate. Results: We could show that the combination of triptolide and artesunate could inhibit pancreatic cancer cell line growth, and induce apoptosis, accompanied by expression of HSP 20 and HSP 27, indicating important roles in the synergic effects. Moreover, tumor growth was decreased with triptolide and artesunate synergy. Conclusion: Our result indicated that triptolide and artesunate in combination at low concentrations can exert synergistic anti-tumor effects in pancreatic cancer cells with potential clinical applications.

The Effects of Korean Cucurbitaceous Plants on the Alkaline Phosphatase Activity Associated with Sonic Hedgehog Pathway

  • Lee, Hwa Jin
    • Korean Journal of Plant Resources
    • /
    • v.26 no.6
    • /
    • pp.673-677
    • /
    • 2013
  • In order to examine the effects of Korean cucurbitaceous plants on sonic hedgehog pathway and growth of cancer cells with over-activated hedgehog pathway, we measured the sonic hedgehog conditioned medium (shh-CM) induced alkaline phosphatase (ALP) activity and cell viability of pancreatic cancer cell lines by treatment of cucurbitaceous plants. Among the tested cucurbitaceous plants, Actinostemma lobatum Maxim, Cucumis sativus L., Momordica charantia L., Schizopepon bryoniaefolius Maxim and Trichosanthes kirilowii Max, var. japonica Kitam showed the potent inhibitory effects (> 50 % at $20{\mu}g/mL$) on shh-CM induced ALP activity. We also evaluated the cell viability of pancreatic cancer cells treated with the cucurbitaceous plants. The tested cucurbitaceous plants showed the very weak effects on cancer cell proliferation but, T. kirilowii Max, var. japonica Kitam presented the inhibitory effect of 72.7 % on the proliferation of pancreatic cancer cells at $20{\mu}g/mL$. Taken together, we screened the effects of Korean cucurbitaceous plants on shh-CM induced ALP activity and cell viability of pancreatic cancers to search for the modulators of the hedgehog pathway leading to the inhibition of cancer cell proliferation. T. kirilowii Max, var. japonica Kitam, among the tested cucurbitaceous plants, showed the inhibitory effects on the shh-CM induced ALP activity and the proliferation of pancreatic cancer cells.

Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway

  • Lee, Soon;Hong, Eunmi;Jo, Eunbi;Kim, Z-Hun;Yim, Kyung June;Woo, Sung Hwan;Choi, Yong-Soo;Jang, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.645-656
    • /
    • 2022
  • Gossypol, a natural phenolic aldehyde present in cotton plants, was originally used as a means of contraception, but is currently being studied for its anti-proliferative and anti-metastatic effects on various cancers. However, the intracellular mechanism of action regarding the effects of gossypol on pancreatic cancer cells remains unclear. Here, we investigated the anti-cancer effects of gossypol on human pancreatic cancer cells (BxPC-3 and MIA PaCa-2). Cell counting kit-8 assays, annexin V/propidium iodide staining assays, and transmission electron microscopy showed that gossypol induced apoptotic cell death and apoptotic body formation in both cell lines. RNA sequencing analysis also showed that gossypol increased the mRNA levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and activating transcription factor 3 (ATF3) in pancreatic cancer cell lines. In addition, gossypol facilitated the cleavage of caspase-3 via protein kinase RNA-like ER kinase (PERK), CHOP, and Bax/Bcl-2 upregulation in both cells, whereas the upregulation of ATF was limited to BxPC-3 cells. Finally, a three-dimensional culture experiment confirmed the successful suppression of cancer cell spheroids via gossypol treatment. Taken together, our data suggest that gossypol may trigger apoptosis in pancreatic cancer cells via the PERK-CHOP signaling pathway. These findings propose a promising therapeutic approach to pancreatic cancer treatment using gossypol.

Apoptotic Effect of Phellodendri Cortex Water Extract on MIA PaCa-2 Cells (췌장암 세포주 MIA PaCa-2에서 황백 물 추출물에 의한 Apoptosis 유도 및 작용기전)

  • Lee, In Young;Jeong, Hwang San;Won, Jin Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.202-211
    • /
    • 2013
  • The purpose of this study is to investigate the apoptotic effect of Phellodendri Cortex water extract (PCWE) on pancreatic cancer cells and to find out the regulating mechanisms. Human-derived pancreatic cancer cell line, MIA PaCa-2 cells were treated by PCWE with various concentrations and the cytotoxicity was determined by MTT assay. The activation of Annexin V, DNA fragmentation, cell cycle arrest and caspase activation were observed to investigate the role of PCWE in pancreatic cancer cells. Also, to find out the regulating mechanisms, we examined the ROS production. The treatment of PCWE induced the cell death in both concentration and time dependent manner. The treatment of PCWE also increased the expression of Annexin V, DNA fragmentation, cell cycle arrest, and cleavage of caspase, which means cell-death PCWE induced was apoptosis but not necrosis. The ROS production was increased by PCWE treatment and the blockade of ROS inhibited the PCWE-induced cell death. These results could suggest that PCWE induced apoptosis via ROS release in pancreatic cancer cell.

Anti-proliferation Effect of Damina 909 on Pancreatic Cancer Cells in Tumor-Xenografted Nude Mice Model

  • Kim, Yu-Ri;Lee, Seung-Min;Seo, Sang-Hui;Lee, Seung-Ho;Kim, In-Kyoung;Jun, Hwang-Jeok;Nam, Jong-Hyun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • In this study, we investigated the anti-proliferative effect of Damina 909 in human cancer cell lines and tumor-xenografted nude mice to elucidate its potential in treating many cancers. Damina 909 treatment resulted in inhibition of cell proliferation of human pancreatic cancer cells. Our in vivo study showed that the weight of pancreatic tumors in Damina 909-treated group were the lighter than control group. Consequently, the intake of food and water in Damina 909-treated group did not change, while those in control group were steadily decreased over a period of treatment. Moreover, Damina 909 treatment elevated the protein expression of p53 and p21 in pancreatic tumor of xenografted nude mice. In summary, compare to other human cancer cells such as prostate and hepatocyte, Damina 909 is most effectively inhibited proliferation of pancreatic cancer cells by increasing the expression of tumor suppressor genes. This led us to speculate that a candidate substance for effective cancer therapy of pancreatic cancer might be contained in Damina 909.

Feasibility Study of Cylindrically Diffusing 532 nm Wavelength for Treatment of Pancreatic Cancer

  • Park, Jin-Seok;Jeong, Seok;Lee, Don Haeng;Zheng, Hong-Mei;Kang, Hyun Wook;Bak, Jinoh;Choi, Jongman
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1619-1624
    • /
    • 2018
  • Laser ablation may provide a minimally invasive palliative treatment for pancreatic cancer. The aim of the current study was to assess the feasibility of a 532-nm laser equipped with a cylindrical light diffuser for the treatment of pancreatic cancer. Monolayers of BxPC-3 human pancreatic cancer cell were exposed to 532 nm laser light. Power levels of 5 - 7 W were used to uniformly target the entire cell colonies for 60 and 120 seconds. The cells were incubated for 24 hours after treatment and viabilities were determined by using a MTT assay. Laser ablation was performed by using the cylindrical light diffuser on six pancreatic tumor tissues obtained from pancreatic cancer xenograft mouse models, which were exposed to the 532 nm light at 5W or 7W for 10 to 30 seconds. In the in vitro study, the survival rates of the pancreatic cancer cells were reduced by 6.6% to 98.9% after the treatment, and the survival rates were reduced by increasing laser power and/or irradiation time. In the pancreatic tumor tissues, a homogenous circular ablation zone was observed in all tumors and the ablation distance induced by the laser irradiation showed to be constant from the diffuser to all directions (standard deviation, 0.3 - 1.3 mm). Ablation distance and area increased with increasing laser power and/or irradiation time. The 532 nm laser effectively killed pancreatic cancer cells, and the cylindrical light diffuser was found to be suitable for laser ablation as it provided uniform ablation in pancreatic cancer.

Review of Domestic Research on Korean Medicine for Pancreatic Cancer (췌장암에 대한 국내 한의학 연구 동향 고찰 - 국내 한의학 논문을 중심으로 -)

  • Han, Ga-jin;Jeong, Ha-yeong;Park, Eun-joo;Lee, A-reum;Lee, Jun-myung;Seong, Sin;Kim, Sung-su
    • The Journal of Internal Korean Medicine
    • /
    • v.40 no.1
    • /
    • pp.70-88
    • /
    • 2019
  • Objective: This study investigated the trends in pancreatic cancer research on Korean medicine in order to establish a direction for further study. Methods: Pancreatic cancer research on Korean medicine was reviewed using databases such as OASIS, KoreanTK, KISS, RISS, KISTI, and NDSL. The search terms were "pancreatic cancer" "Korean medicine," and "herbal medicine." There was no restriction on publication dates, and the reviewed studies were analyzed according to the type of research. Results: Nineteen studies were reviewed. The numbers and types of research were as follows: 9 clinical studies including case reports, 2 review studies, and 8 in vitro studies; there was no in vivo study. Among the clinical research were 3 descriptive studies and 6 case reports. The baseline characteristics and quality of life of pancreatic cancer patients were analyzed in the descriptive studies. In the case reports, interventions such as herbal medicine, pharmacopuncture, and acupuncture were used. Research articles on the review of pancreatic cancer were titled "Preliminary Study for Development of Korean Medicine Clinical Practice Guideline for Pancreatic Cancer" and "Systemic Review on the Tumor Dormancy Therapy." Cell lines such as PANC-1, MIA PaCa-2, and AsPC-1 were used for in vitro studies. These studies have reported decreased cell viability, induced apoptosis, and changes in cancer-related gene expression. Conclusion: Through this review, we found that using Korean medicine for treating pancreatic cancer is applicable. However, due to overall limited the number of study, the benefit of Korean medicine for pancreatic cancer may be substantiated to a limited degree. Better methodological quality and large controlled trials are expected to further quantify the therapeutic effect of Korean medicine.

Significance of Caveolin-1 Regulators in Pancreatic Cancer

  • Chen, Tao;Liu, Liang;Xu, Hua-Xiang;Wang, Wen-Quan;Wu, Chun-Tao;Yao, Wan-Tong;Yu, Xian-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4501-4507
    • /
    • 2013
  • Caveolin-1 is a scaffold protein on the cell membrane. As the main component of caveolae, caveolin-1 is involved in many biological processes that include substance uptake and transmembrane signaling. Many of these processes and thus caveolin-1 contribute to cell transformation, tumorigenesis, and metastasis. Of particular interest are the dual rolesof tumor suppressor and oncogene that caveolin-1 appear to play in different malignancies, including pancreatic cancer. Therefore, analyzing caveolin-1 regulators and understanding their mechanisms of actionis key to identifying novel diagnostic and therapeutic tools for pancreatic cancer. This review details the mechanisms of action of caveolin-1 regulators and the potential significance for pancreatic cancer treatment.