• Title/Summary/Keyword: pancreatic beta cells

Search Result 149, Processing Time 0.422 seconds

Padina arborescens extract protects high glucose-induced apoptosis in pancreatic ${\beta}$ cells by reducing oxidative stress

  • Park, Mi Hwa;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.494-500
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study investigated whether Padina arborescens extract (PAE) protects INS-1 pancreatic ${\beta}$ cells against glucotoxicity-induced apoptosis. MATERIALS/METHODS: Assays, including cell viability, lipid peroxidation, generation of intracellular ROS, NO production, antioxidant enzyme activity and insulin secretion, were conducted. The expressions of Bax, Bcl-2, and caspase-3 proteins in INS-1 cells were evaluated by western blot analysis, and apoptosis/necrosis induced by high glucose was determined by analysis of FITC-Annexin V/PI staining. RESULTS: Treatment with high concentrations of glucose induced INS-1 cell death, but PAE at concentrations of 25, 50 or $100{\mu}g/ml$ significantly increased cell viability. The treatment with PAE dose dependently reduced the lipid peroxidation and increased the activities of antioxidant enzymes reduced by 30 mM glucose, while intracellular ROS levels increased under conditions of 30 mM glucose. PAE treatment improved the secretory responsiveness following stimulation with glucose. The results also demonstrated that glucotoxicity-induced apoptosis is associated with modulation of the Bax/Bcl-2 ratio. When INS-1 cells were stained with Annexin V/PI, we found that PAE reduced apoptosis by glucotoxicity. CONCLUSIONS: In conclusion, the present study indicates that PAE protects against high glucose-induced apoptosis in pancreatic ${\beta}$ cells by reducing oxidative stress.

Agonist (P1) Antibody Converts Stem Cells into Migrating Beta-Like Cells in Pancreatic Islets

  • Eun Ji Lee;Seung-Ho Baek;Chi Hun Song;Yong Hwan Choi;Kyung Ho Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1615-1621
    • /
    • 2022
  • Tissue regeneration is the ultimate treatment for many degenerative diseases, however, repair and regeneration of damaged organs or tissues remains a challenge. Previously, we showed that B1 Ab and H3 Ab induce stem cells to differentiate into microglia and brown adipocyte-like cells, while trafficking to the brain and heart, respectively. Here, we present data showing that another selected agonist antibody, P1 antibody, induces the migration of cells to the pancreatic islets and differentiates human stem cells into beta-like cells. Interestingly, our results suggest the purified P1 Ab induces beta-like cells from fresh, human CD34+ hematopoietic stem cells and mouse bone marrow. In addition, stem cells with P1 Ab bound to expressed periostin (POSTN), an extracellular matrix protein that regulates tissue remodeling, selectively migrate to mouse pancreatic islets. Thus, these results confirm that our in vivo selection system can be used to identify antibodies from our library which are capable of inducing stem cell differentiation and cell migration to select tissues for the purpose of regenerating and remodeling damaged organ systems.

Ultrastructural Change and Insulin Distribution of the Cultured Pancreatic Islet $\beta$-cell (배양된 이자섬 $\beta$세포의 미세구조적 변화와 인슐린 분포 양상)

  • Min, Byoung-Hoon;Kim, Soo-Jin
    • Applied Microscopy
    • /
    • v.37 no.4
    • /
    • pp.249-258
    • /
    • 2007
  • The Pancreatic islet are the clusters of endocrine cells scattered through out the exocrine pancreas. Transplantation of a sufficient pancreatic islets can normalize blood glucose level so that may prevent devastating complications of type I diabetes(IDDM) and other side effects of the IDDM. Recently, there are several approaches to transplant sufficient pancreatic islet, and it was comprised in increase or regeneration of the endogenous $\beta$-cell mass from donor's pancreas, but relatively few studies have been devoted to the morphological characters of the isolated and 3 day cultured pancreatic islets. We investigated morphological pattern of intracellular structure of isolated and 3 day cultured pancreatic islets. The morphological characters of the pancreatic islets were observed by scanning electron microscope and transmission electron microscope, and insulin distribution of the each islets were observed by transmission electron microscope, and were labeled with insulin antibody. Intracellular structures including nuclei, mitochondria, RER, Golgi complex and many secretory granules were normally appeared in the isolated pancreatic islets which was extracted immediately dornor's pancreas, however, There is a significant morphological changes between the 3 day cultured pancreatic islets and isolated islets. 3 day cultured pancreatic islet's $\beta$-cells had normal nuclei but increased cytoplasm mass and RER and developed Golgi complex. Insulin secretory granules were decreased in numbers rather than isolated pancreatic islet. In this study, the pattern of intracellular structure variation was examined during pancreatic islet culture. Most distinct features are variation of the insulin secretory granules, and developed RER, and dilated golgi complex. Therefore, we suggested that the various change of the morphological characters on cultured pancreatic islets were responsible for the function(biosynthesis and secretion of insulin) and growth. These results were also cultured islets have greater ability to recover and maintain normoglycemia than isolated islet transplantation.

Effect on Pancreatic Beta Cells and Nerve Cells by Low LET X-ray (Low LET X-ray가 췌장 ${\beta}$ 세포와 신경세포에 미치는 효과)

  • Park, Kwang-Hun;Kim, Kgu-Hwan
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Cultured pancreatic beta cells and nerve cells, it is given normal condition of 10% FBS (fetal bovine serum), 11.1 mM glucose and hyperglycemia codition of 1% FBS, 30 mM glucose. For low LET X-ray irradiated with 0.5 Gy/hr dose-rate(total dose: 0.5 to 5 Gy). Survival rates were measured by MTT assay. When non irradiated, differentiated in the pancreatic beta cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a small reduction. However increasing the total dose of X-ray, the survival rate of normal conditions decreased slightly compared to the survival rate of hyperglycemia conditions, the synergistic effect was drastically reduced. When non irradiated, undifferentiated in the nerve cells experiment is hyperglycemia conditions survival rate compared to normal conditions survival rate seemed a large reduction. As the cumulative dose of X-ray normal conditions and hyperglycemia were all relatively rapid cell death. But the rate of decreased survivals by almost parallel to the reduction proceed and it didn't show synergistic effect.

Effect of Propofol, an Intravenous Anesthetic Agent, on $K_{ATP}$ Channels of Pancreatic ${\beta}-cells$ in Rats

  • Park, Eun-Jee;Song, Dae-Kyu;Cheun, Jae-Kyu;Bae, Jung-In;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2000
  • ATP-sensitive potassium channels ($K_{ATP}$ channels) play an important role in insulin secretion from pancreatic beta cells. We have investigated the effect of propofol on $K_{ATP}$ channels in cultured single pancreatic beta cells of rats. Channel activity was recorded from membrane patches using the patch-clamp technique. In the inside-out configuration bath-applied propofol inhibited the $K_{ATP}$ channel activities in a dose-dependent manner. The half-maximal inhibition dose (ED50) was $48.6{\pm}8.4\;{\mu}M$ and the Hill coefficient was $0.73{\pm}0.11.$ Single channel conductance calculated from the slope of the relationship between single channel current and pipette potential $(+20{\sim}+100\;mV)$ was not significantly altered by propofol $(control:\;60.0{\pm}2.7\;pS,\;0.1\;mM\;propofol:\;58.7{\pm}3.5\;pS).$ However, mean closed time was surely increased. Above results indicate that propofol blocks the $K_{ATP}$ channels in the pancreatic beta cells in the range of its blood concentrations during anesthesia, suggesting a possible effect on insulin secretion and blood glucose level.

  • PDF

Silymarin Inhibits Cytokine-Stimulated Pancreatic Beta Cells by Blocking the ERK1/2 Pathway

  • Kim, Eun Jeong;Kim, Jeeho;Lee, Min Young;Sudhanva, Muddenahalli Srinivasa;Devakumar, Sundaravinayagam;Jeon, Young Jin
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.282-287
    • /
    • 2014
  • We show that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibits cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$)-induced production of nitric oxide (NO) in the pancreatic beta cell line MIN6N8a. Immunostaining and Western blot analysis showed that silymarin inhibits iNOS gene expression. RT-PCR showed that silymarin inhibits iNOS gene expression in a dose-dependent manner. We also showed that silymarin inhibits extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) phosphorylation. A MEK1 inhibitor abrogated CM-induced nitrite production, similar to silymarin. Treatment of MIN6N8a cells with silymarin also inhibited CM-stimulated activation of NF-${\kappa}B$, which is important for iNOS transcription. Collectively, we demonstrate that silymarin inhibits NO production in pancreatic beta cells, and silymarin may represent a useful anti-diabetic agent.

Beneficial Effect of Lespedeza cuneata (G. Don) Water Extract on Streptozotocin-induced Type 1 Diabetes and Cytokine-induced Beta-cell Damage

  • Kim, Min Suk;Sharma, Bhesh Raj;Rhyu, Dong Young
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.175-179
    • /
    • 2016
  • The aim of this study was to evaluate the anti-diabetic effects of the water extract of Lespedeza cuneata (LCW) using rat insulinoma (RIN) m5F cells and streptozotocin (STZ)-induced diabetic rats. The effect of LCW on the protection of pancreatic beta cells was assessed using MTT assay, and nitric oxide production was assessed using Griess reagent. STZ-induced diabetic rats were treated with 100 and 400 mg/kg body weight of LCW for 5 weeks. In results, LCW significantly protected cytokine-induced toxicity and NO production, and increased insulin secretion in RINm5F cells. LCW significantly decreased serum blood glucose, thiobarbituric acid reactive substances (TBARS), blood urea nitrogen (BUN) and advanced glycation end products (AGEs) levels, and renal fibronectin expression in STZ-induced diabetic rats. Also, LCW effectively improved BW loss in STZ-induced diabetic rats. Thus, our results suggest that LCW has a beneficial effect on cytokine-induced pancreatic beta cell damage and biomarkers of diabetic complication in hyperglycemic rats.

Prediabetic In vitro Model in Pancreatic Beta Cells Induced by Streptozotocin (췌장 베타세포에서 스트렙토조토신으로 유도한 인슐린 의존형 당뇨병 실험 모델)

  • Lee, Ihn-Soon;Rhee, In-Ja;Kim, Kyong-Tai
    • YAKHAK HOEJI
    • /
    • v.41 no.2
    • /
    • pp.260-267
    • /
    • 1997
  • To establish prediabetes in vitro model concerning the etiology of IDDM(Insulin Dependent Diabetes Mellitus) in cellular level we have designed prediabetes in vitro models in pa ncreatic beta cells. HIT-T15, RINm5F and isolated rat islets were chosen as pancreatic beta cells, and streptozotocin (STZ) used as diabetogenic agent. Degree of beta cell destruction to establish prediabetic in vitro model was determined by cell proliferation and insulin release using thymidine uptake and radio immuno assay. When HIT-T15 and RINm5F cells were treated with STZ, the degree of cell deterioration was dependent upon the origin and passage number of beta cells, and in the case of isolated islets STZ showed the more sensitivity than above two beta cell lines. The concentration and exposure time of STZ treatment to establish prediabetes in vitro model in beta cell lines and isolated rat islets were 2 ~ 10mM, 30 min. and 1 ~ 5mM, 30 min., respectively.

  • PDF

SIRT1 Knockdown Enhances the Differentiation of Human Embryonic Stem Cells into Pancreatic β Cells

  • Seo, Nan-Hee;Song, Hwa-Ryung;Han, Myung-Kwan
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.391-399
    • /
    • 2019
  • Nicotinamide is used to maturate pancreatic progenitors from embryonic stem cells (ESCs) into insulin-producing cells (IPCs). It has been known that nicotinamide inhibits the enzymatic activity of SIRT1, an NAD+-dependent deacetylase. Here we show that SIRT1 knockdown enhances the differentiation of human ESCs into IPCs. SIRT1 knockdown enhances the clustering size of IPCs and the expression of pancreatic genes including c-peptide, pancreas/duodenum homeobox protein 1 (PDX1), insulin, somatostatin, glucagon and Nkx6.1 in human ESC-derived IPCs. In addition, We found that IPCs differentiated from SIRT1 knockdowned human ESCs have more zinc compared to those from control human ESCs. Our data suggest that SIRT1 negatively regulates the differentiation of β cells from human ESCs.

Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges

  • Dayem, Ahmed Abdal;Lee, Soo Bin;Kim, Kyeongseok;Lim, Kyung Min;Jeon, Tak-il;Cho, Ssang-Goo
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.295-303
    • /
    • 2019
  • Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic ${\beta}$ cells. Large-scale production of insulin-secreting ${\beta}$ cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine.