• Title/Summary/Keyword: palladium catalyst

Search Result 133, Processing Time 0.024 seconds

Effects of Catalyst Promotion on the Selective Hydrogenation of Biphenol Using Various Pd/C Catalysts

  • Cho, Hong-Baek;Hong, Bum-Eui;Park, Jai-Hyun;Ahn, Sung-Hyun;Park, Yeung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.12
    • /
    • pp.2434-2440
    • /
    • 2008
  • The effect of sodium (Na) promotion was studied in the biphenol (BP) hydrogenation using various Pd/C catalysts. Different amounts of sodium metal were used for promotion with Pd/C and their effects on BP hydrogenation were observed. The promotion order was changed to compare the effect of the position of the promoter in relation to the palladium (Pd) metal on the catalytic activity and yield of the final product, bicyclohexyl-4,4'-diol (BHD). Pd/C catalysts prepared from different methods were also sodium-promoted and the changes of the reaction pathway according to the type of promoted Pd/C catalyst were compared.

Synthesis of Thermally Stable Mesoporous Alumina by using Bayberry Tannin as Template in Aqueous System

  • Liu, Jing;Huang, Fuming;Liao, Xuepin;Shi, Bi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2650-2656
    • /
    • 2013
  • Mesoporous alumina was synthesized using bayberry tannin (BT) as template. This novel synthesis strategy was based on a precipitation method associated with aluminum nitrate as the source of aluminum in an aqueous system. $N_2$ adsorption/desorption, XRD, SEM and TEM were used to characterize the as-prepared mesoporous alumina. The results showed that the mesoporous alumina possessed crystalline pore wall, high specific surface area, narrow pore distribution and excellent thermal stability. Moreover, the surface area and pore size of the mesoporous alumina can be tuned by changing the experimental parameters. Further, the mesoporous alumina was investigated as the support of palladium catalyst ($Pd-Al_2O_3{^*}$) for the hydrogenation of propenyl, styrene and linoleic acid. For comparison, the reference catalyst ($Pd-Al_2O_3$) prepared without barberry tannin was also employed for the catalytic hydrogenation. The experimental results showed that $Pd-Al_2O_3{^*}$ exhibited the superior catalytic performance than $Pd-Al_2O_3$ for all the investigated substrates, especially for the hydrogenation of linoleic acid with larger molecular.

Performance Analysis of The Direct Formic Acid Fuel Cell using A New Catalysis Coating Method (새로운 촉매 코팅법을 이용한 직접 개미산 연료전지의 성능 분석)

  • Kwon, Y.;Kwon, B.;Kim, J.;Kim, Y.Y.;Jung, W.;Han, J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.29-32
    • /
    • 2008
  • The cell performance of direct formic acid fuel cell (DFAFC) having catalysts coated by electrospray was analyzed. Pd catalyst was used for the anode electrode and Pd catalyst loading amount and formic acid feed rate dependances of fuel cell performance were evaluated. When loading amount of Pd is in between 3mg/$cm^2$ and 7mg/$cm^2$ and formic acid feed rate is 5ml/min., 3mg/$cm^2$ sample showed better potential at 129 mA/$cm^2$ and power density due to difference in mass transfer limitation. However, when the feed rate is greater than 10ml/min., the opposite tendency was observed between 3mg/$cm^2$ and 7mg/$cm^2$ samples. The result was attributed to improvement in electrochemical reaction of the Pd. Based on the above results, In DFAFC including Pd catalyst that was coated by electrospray, 0.537V as the maximum potential at 129 mA/$cm^2$ was attained.

  • PDF

Development of the Highly Dispersed Palladium-Nickel Catalysts for Catalytic Partial Oxidation of Methane (메탄 부분산화 반응을 위한 고분산된 팔라듐-니켈 촉매 합성 및 반응)

  • Lee, Seunghyun;Jeon, Jonghyun;Kim, Juchan;Ha, Kyoung-Su
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • In this study, ordered mesoporous silica-supported Ni catalysts were prepared for catalytic partial oxidation of methane (CPOM) by using electroless nickel plating method. Unlike conventionally impregnated catalysts, the electrolessly-plated nickel catalyst showed that nickel was highly dispersed and formed stably on silica-supported surface. It was verified by TEM-EDS analysis. During the activity tests, the electrolessly-plated nickel was barely sintered and the amount of carbon deposition was very small. Consequently, the catalyst was far less deactivated, while the sintering was significantly observed in the cases of the catalysts prepared by the conventional impregnation method. Regarding the palladium-promoted catalysts, the reducibility of nickel was increased, and the reaction performances were enhanced in terms of CH4 conversion and H2/CO ratio of produced syngas.

Recovery of Metallic Pd with High Purity from Pd/Al2O3 Catalyst by Hydrometallurgy in HCl (염산 침출용액을 이용한 Pd/Al2O3 촉매에서 고순도 팔라듐 회수)

  • Kim, Ye Eun;Byun, Mi Yeon;Baek, Jae Ho;Lee, Kwan-Young;Lee, Man Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • Palladium (Pd) has been widely used in various industrial applications such as jewelry, catalyst, and dental materials despite its limited resources. It has been gaining attention to recover Pd with high purity from the spent materials. This study investigated the optimum conditions for the leaching and recovery of metallic Pd. The leaching parameters are HCl concentration, temperature, time, concentration of oxidants, and pulp density. 97.2% of Pd leaching efficiency was obtained in 3 M HCl with 3 vol% oxidants at 80℃ for 60 min. The ratio of hydrogen peroxide to sodium hypochlorite played a critical role in the leaching efficiency due to the supply of Cl- ions in the leachate. Moreover, the complete recovery of Pd in the leachate was achieved at 80℃ with 0.3 formic acid/leachate after adjusting the pH value of 7. This situation was ascribed to the decomposition of formic acid into hydrogen gas and carbon dioxide at 80℃. ICP-AES and XRD characterized the recovered Pd powder, and the purity of the recovered powder was found to be 99.6%. Consequently, the recovered Pd powder with high purity could be used in circuits, catalyst precursors, and surgical instruments.

Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film (Ni 박막 위 20 nm급 고정렬 Pt 크로스-바 구조물의 형성 방법)

  • Park, Tae Wan;Jung, Hyunsung;Cho, Young-Rae;Lee, Jung Woo;Park, Woon Ik
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.910-914
    • /
    • 2018
  • Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.

Effect of surfactants on reductive degradation of Endosurfan I and II by ZVM (영가금속에 의한 Endosulfan I과 II의 환원분해에 미치는 계면활성제의 영향)

  • 김진영;김영훈;신원식;전영웅;송동익;최상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.187-190
    • /
    • 2002
  • Reductive dechlorination of endosulfans was studied with zero valent metals (ZVMs) and bimetals in aqueous batch reactors. The effect of surfactants was evaluated. Endosulfan was successfully dechlorinated with zero valent iron. However, a bimetal, palladium coated iron (Pd/Fe) showed a highly enhanced reactivity for both endosulfan I and II indicating palladium act as a dechlorination catalyst on the iron. The effect of surfactants on degradation with ZVM has been very controvertible. Variable concentration of a nonionic surfactant, Triton X-100 and an anionic surfactant, SDS were added into the reactor with ZVM. The reaction rates of endosulfan were increased with both surfactants. In the case of Triton X-100, the reaction rate was increased with the increasing surfactant concentration up to 400 mg/L. Addition of small amount of surfactant under the CMC, the reaction rate was increased. However, the enhancing effect was diminished when a higher concentration of surfactant (1,000 mg/L) was used. Current study implicate that the surfactant adsorbed on the metal surface might increase the surface concentration of endosulfan resulting in the increased reaction rate. However, partitioning of endosulfan into the micelle formed at the high concentration of surfactant diminish the enhancing effect by reducing the contact chance between target compound and the metal surface.

  • PDF

Partial Oxidation of Methane in Palladium-silver Alloy Membrane Reactor (팔라듐-은 막반응기를 이용한 메탄의 부분산화반응)

  • Choi, Tae-Ho;Kim, Kwang-Je;Moon, Sang-Jin;Suh, Jung-Chul;Baek, Young-Soon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.641-647
    • /
    • 2005
  • The partial oxidation of methane is one of important processes for hydrogen production. As a membrane reactor, palladium-silver (Pd-Ag) alloy membrane prepared by electroless plating technique was employed for partial oxidation of methane. The experimental variables were reaction temperature, $O_2/CH_4$ mole ratio, $CH_4$ feed rate, and $N_2$ sweep gas flow rate. The methane conversions increased with the reaction temperatures in the range of 350 to $730^{\circ}C$. The highest methane conversion and CO selectivity were obtained at the condition of $O_2/CH_4$ mole ratio of 0.5 and $730^{\circ}C$ using commercially available nickel/alumina catalyst. The Pd-Ag membrane reactor showed higher methane conversions, 10~40% higher, compared to those in a traditional reactor.

Preparation of Graphene-Palladium Composite by Aerosol Process and It's Characterization for Glucose Biosensor (에어로졸 공정에 의한 그래핀-팔라듐 복합체 제조 및 글루코스 바이오센서 특성평가)

  • Kim, Sun Kyung;Jang, Hee Dong;Chang, Hankwon;Choi, Jeong-Woo
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Palladium (Pd) nanoparticles attached graphene (GR) composite was synthesized for an enhanced glucose biosensor. Aerosol spray pyrolysis (ASP) was employed to synthesize the GR-Pd composite using a colloidal mixture of graphene oxide (GO) and palladium chloride ($PdCl_2$) precursor. The effects of the weight ratio of the Pd/GR on the particle properties including the morphology and crystal structure were investigated. The morphology of GR-Pd composites was generally the shape of a crumpled paper ball, and the average composite size was about $1{\mu}m$. Pd nanoparticles less than 20 nm in diameter were deposited on GR sheets and the Pd nanoparticles showed clear crystallinity. The characteristic of the glucose biosensor fabricated with the as-prepared GR-Pd composite was tested through cyclic voltammetry measurements. The biosensor exhibited a high current flow as well as clear redox peaks, which resulted in a superior ability of the catalyst in terms of an electrochemical reaction. The highest sensitivity obtained from the amperometric response of the glucose biosensor was $14.4{\mu}A/mM{\cdot}cm^2$.