• Title/Summary/Keyword: palatal

Search Result 684, Processing Time 0.018 seconds

FINITE ELEMENT ANALYSIS OF MAXILLARY CENTRAL INCISORS RESTORED WITH VARIOUS POST-AND-CORE APPLICATIONS (여러가지 post-and-core로 수복된 상악 중절치의 유한요소법적 연구)

  • Seo, Min-Seock;Shon, Won-Jun;Lee, Woo-Cheol;Yoo, Hyun-Mi;Cho, Byeong-Hoon;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.324-332
    • /
    • 2009
  • The purpose of this study was to investigate the effect of rigidity of post core systems on stress distribution by the theoretical technique, finite element stress-analysis method. Three-dimensional finite element models simulating an endodontically treated maxillary central incisor restored with a zirconia ceramic crown were prepared and 1.5 mm ferrule height was provided. Each model contained cortical bone, trabecular bone, periodontal ligament, 4 mm apical root canal filling, and post-and-core. Six combinations of three parallel type post (zirconia ceramic, glass fiber, and stainless steel) and two core (Paracore and Tetric ceram) materials were evaluated, respectively. A 50 N static occlusal load was applied to the palatal surface of the crown with a $60^{\circ}$angle to the long axis of the tooth. The differences in stress transfer characteristics of the models were analyzed. von Mises stresses were chosen for presentation of results and maximum displacement and hydrostatic pressure were also calculated. An increase of the elastic modulus of the post material increased the stress, but shifted the maximum stress location from the dentin surface to the post material. Buccal side of cervical region (junction of core and crown) of the glass fiber post restored tooth was subjected to the highest stress concentration. Maximum von Mises stress in the remaining radicular tooth structure for low elastic modulus resin core (29.21 MPa) was slightly higher than that for high elastic modulus resin core (29.14 MPa) in case of glass fiber post. Maximum displacement of glass fiber post restored tooth was higher than that of zirconia ceramic or stainless steel post restored tooth.

The influence of composite resin restoration on the stress distribution of notch shaped noncarious cervical lesion A three dimensional finite element analysis study (복합레진 수복물이 쐐기형 비우식성 치경부 병소의 응력 분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Lee, Chae-Kyung;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.69-79
    • /
    • 2007
  • The purpose of this study was to investigate the effects of composite resin restorations on the stress distribution of notch shaped noncarious cervical lesion using three-dimensional (3D) finite element analysis (FEA). Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072 ; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid or flowable resin and each restoration was simulated with adhesive layer thickness ($40{\mu}m$) A static load of 500 N was applied on a point load condition at buccal cusp (loading A) and palatal cusp (loading B). The principal stresses in the lesion apex (internal line angle of cavity) and middle vertical wall were analyzed using ANSYS. The results were as follows 1. Under loading A, compressive stress is created in the unrestored and restored cavity. Under loading B, tensile stress is created. And the peak stress concentration is seen at near mesial corner of the cavity under each load condition. 2. Compared to the unrestored cavity, the principal stresses at the cemeto-enamel junction (CEJ) and internal line angle of the cavity were more reduced in the restored cavity on both load con ditions. 3. In teeth restored with hybrid composite, the principal stresses at the CEJ and internal line angle of the cavity were more reduced than flowable resin.

Effect and mechanism of chitosan-based nano-controlled release system on the promotion of cell cycle progression gene expression (키토산 기반 나노방출제어시스템의 세포주기진행 유전자 발현 증진 효과 및 기전)

  • Lee, Won Joong;Park, Kwang Man;Lee, sungbok Richard;Hwang, Yu Jeong;Lee, Suk Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.379-394
    • /
    • 2021
  • Purpose. In our previous studies, application of trichloroacetic acid (TCA) to gingival fibroblasts or to canine palatal soft tissue was verified to alter the expression of several genes responsible for cell cycle progression. In order to confirm this effect in a system allowing sequential release of TCA and epidermal growth factor (EGF), expression of various cell cycle genes following the application of the agents, using hydrophobically modified glycol chitosan (HGC)-based nano-controlled release system, was explored in this study. Materials and methods. HGC-based nano-controlled release system was developed followed by loading TCA and EGF. The groups were defined as the control (CON); TCA-loaded nano-controlled release system (EXP1); TCA- and EGF- individually loaded nano-controlled release system (EXP2). At 24- and 48 hr culture, expression of 37 cell cycle genes was analyzed in human gingival fibroblasts. Correlations and the influential genes were also analyzed. Results. Numerous genes such as cyclins (CCNDs), cell division cycles (CDCs), cyclin-dependent kinases (CDKs), E2F transcription factors (E2Fs), extracellular signal-regulated kinases (ERKs) and other cell cycle genes were significantly up-regulated in EXP1 and EXP2. Also, cell cycle arrest genes of E2F4, E2F5, and GADD45G were up-regulated but another cell cycle arrest gene SMAD4 was down-regulated. From the multiple regression analysis, CCNA2, CDK4, and ANAPC4 were determined as the most influential factors on the expression of ERK genes. Conclusion. Application of TCA and EGF, using the HGC-based nano-controlled sequential release system significantly up-regulated various cell cycle progression genes, leading to the possibility of regenerating oral soft tissue via application of the proposed system.

Comparison of Crown Shape and Amount of Tooth Reduction for Primary Anterior Prefabricated Crowns (유전치 기성 크라운의 형태 및 치질 삭제량 비교)

  • Kim, Soyoung;Lim, Youjin;Lee, Sangho;Lee, Nanyoung;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.64-75
    • /
    • 2019
  • The purpose of this study was to obtain instructions for size selection of prefabricated crown and tooth reduction by 3-dimensional analysis of the size and shape of the maxillary primary central and lateral incisors and prefabricated crowns (celluloid strip, resin veneered stainless steel, and zirconia crowns). The maxillary primary central and lateral incisors of 300 Korean children was scanned with three types of prefabricated crown to create standard three-dimensional tooth models and prefabricated crowns. The shapes of the prefabricated crowns and natural teeth were compared according to four parameters (mesio-distal width, height, labio-palatal width, and labial surface curvature coefficient) and calculated the amount of tooth reduction required for each prefabricated crown. The size 2 resin veneered stainless steel crown, size 1 zirconia crown, and size 2 celluloid strip crown were most similar in shape to the primary central incisor. The size 3 rein veneered stainless steel crown, size 2 zirconia crown, and size 3 celluloid strip crown were most similar to the primary lateral incisor. The amount of tooth reduction was similar in both maxillary primary central and lateral incisors. The incisal reduction was greatest for the zirconia crown. At the proximal surface, the zirconia and celluloid strip crowns required a similar amount of tooth reduction, but more than the resin veneered stainless steel crown. The labial surface reduction was greatest for the zirconia crown. The degree of lingual surface reduction was not significant among the three prefabricated crowns. Among the assessment parameters, mesio-distal crown width was the most important for choosing a prefabricated crown closest to the actual size of the natural crown.