• Title/Summary/Keyword: packet rings

Search Result 5, Processing Time 0.026 seconds

Optimal Bandwidth Assignment for Packet Rings

  • Hua, Cunqing;Yum, Tak-Shing Peter;Li, Cheng
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.402-407
    • /
    • 2007
  • The network throughput is an important performance criteria for the packet ring networks. Since maximizing the network throughput can lead to severe bias in bandwidth allocation among all flows, fairness should be imposed to prevent bandwidth starvation. The challenge here, therefore, is the joint optimization of the network throughput and fairness. In this paper, we present the optimal bandwidth assignment scheme to decompose this optimization problem into two tasks, one for finding fair bandwidth assignment and the other for finding the optimal routing. The network throughput is maximized under the fairness constraints when these tasks are performed iteratively.

Torus Ring : Improving Performance of Interconnection Networks by Modifying Hierarchical Ring (Torus Ring : 계층 링 구조의 변형을 통한 상호 연결망의 성능 개선)

  • Kwak, Jong-Wook;Ban, Hyong-Jin;Jhon, Chu-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.5
    • /
    • pp.196-208
    • /
    • 2005
  • In multiprocessor systems, interconnection network design is critical for overall system performance. Popular interconnection networks, which are generally considered, are meshes, rings, and hierarchical rings. In this paper, we propose (')Torus Ring('), which is a modified version of hierarchical ring. Torus Ring has the same complexity as the hierarchical rings, but the only difference is the way it connects the local rings. It has an advantage over the hierarchical rings when the destination of a packet is the neighbor local ring in the reverse direction. Though the average number of hops in Torus Ring is equal to that of the hierarchical rings when assuming the uniform distribution of each transaction, the benefits of the number of hops are expected to be larger because of the spatial locality in the real environment of parallel programming. In the simulation results, latencies in the interconnection network are reduced by up to 19$\%$, and the execution times are reduced by up to 10$\%$.

Protocol Design for Wavelength Routing in Optical Ring Access Networks (광링액세스네트워크에서의 파장 라우팅을 위한 프로토콜 설계)

  • Lee, Sang-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2382-2392
    • /
    • 2014
  • In this paper, a new data frame structure for wavelength routing in optical ring access network(ORAN) is designed and the functions of each field in the frame are defined. In addition, the IP packet transmission to the network layer corresponding to the newly proposed structure of the protocol stack is newly presented. Tha data transmission protocol design techniques of ORAN was proposed. IP packet and broadcasting packet transmission within the sub-network, and the IP packet transmission to other sub-network was shown through the process illustration. In the process, the encapsulation and framing process of the wavelength information to routing has been described in detail. And each step takes place in a packet transfer process is demonstrated. A ring type optical access network protocol is not yet research field. ORAN data transfer protocol to send/receive module structure of a subscriber node and a control node of the two rings which analyzed the results are shown. The high-speed Internet solution is proposed that by using wavelength routing the packet transport protocol for ORAN is designed.

Fairness Measures for Data Communication Networks (데이터 통신망을 위한 공평성 성능 확보 방안)

  • Ju, Un-Gi;Lee, Hyeong-Seop
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.135-138
    • /
    • 2004
  • This paper considers a ring loading problem on RPR(Resilient Packet Ring), where RPR is recommended by IEEE802.17 Resilient Packet Ring working group for data optimized networks without the requirements of provisioning circuits. RPR is well suitable for metropolitan area network with two counter-rotating rings that multiple stations share the bandwidth, where the data and its corresponding control traffic is transmitted to the two opposite directional ring, respectively. One of the major concerns on RPR is to provide fairness among traffic requirements. The paper discusses several fairness measures and analysis ring loading problems for the fairness.

  • PDF

Communications Protocol Used in the Wireless Token Rings for Bird-to-Bird

  • Nakajima, Isao;Juzoji, Hiroshi;Ozaki, Kiyoaki;Nakamura, Noboru
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.163-170
    • /
    • 2018
  • We developed a multicast communication packet radio protocol using a time-sharing tablet system ("wireless token ring") to achieve the efficient exchange of files among packet radio terminals attached to swans. This paper provides an overview of the system and the protocol of the packet communications. The packet device forming the main part of the transceiver developed is the Texas Instruments CC2500. This device consists of one call-up channel and one data transmission channel and could improve error frame correction using FEC (forward error correction) with 34.8 kbps MSK and receiving power of at least -64 dBm (output 1 dBm at distance of 200 m using 3 dBi antenna). A time-sharing framework was determined for the wireless token ring using call sign ordinals to prevent transmission right loss. Tests using eight stations showed that resend requests with the ARQ (automatic repeat request) system are more frequent for a receiving power supply of -62 dBm or less. A wireless token ring system with fixed transmission times is more effective. This communication protocol is useful in cases in which frequency resources are limited; the energy consumed is not dependent on the transmission environment (preset transmission times); multiple terminals are concentrated in a small area; and information (position data and vital data) is shared among terminals under circumstances in which direct communication between a terminal and the center is not possible. The method allows epidemiological predictions of avian influenza infection routes based on vital data and relationships among individual birds based on the network topology recorded by individual terminals. This communication protocol is also expected to have applications in the formation of multiple in vivo micromachines or terminals that are inserted into living organisms.