• Title/Summary/Keyword: packet priority

Search Result 243, Processing Time 0.02 seconds

Recirculating Shuffle-Exchange Interconnection ATM Switching Network Based on a Priority Control Algorithm (우선순위 제어기법을 기반으로 한 재순환 Shuffle-Exchage 상호연결 ATM 스위치)

  • Park, Byeong-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1949-1955
    • /
    • 2000
  • This paper proposes a multistage interconnection ATM switching network without internal blocking. The first is recirculating shuffle-exchange network improved on hardware complexity. The next is connected to Rank network with tree structure. In this network, after the packets transferred to the same output ports are given each priority, only a packet with highest priority is sent to the next, an the others are recirculated to the first. Rearrangeability through decomposition and composition algorithm is applied for the transferred packets in hanyan network and all they arrive at a final destinations. To analyze throughput, waiting time and packet loss ratio according tothe size of buffer, the probabilities are modeled by a binomial distribution of packet arrival.

  • PDF

A Study on The Performance Evaluation of Differentiated Service Using Time Sliding Window with 3 Color Marking (3 색 표식을 갖는 타임 슬라이딩 윈도우를 사용하는 차등화 서비스의 성능평가 연구)

  • Chun, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.16-19
    • /
    • 2011
  • Differentiated Service is an IP QoS ensuring method based on packet marking that allows packets to be prioritized according to user requirements. During the time of congestion, more low priority packets are dropped than high priority packets. Different policy models are used to determine how to mark the packet. This paper investigated the performance of Differentiated Service using time sliding window with 3 color marking (TSW3CM). Simulation results using NS-2 showed that Differentiated Service can provide the quality of service requirements.

Comparison and Analysis of Cycling Packet Drop Algorithms and RIO as Packet Drop for the Congestion Control (혼잡제어용 패킷 폐기를 위한 사이클링 패킷 폐기 기법과 RIO 알고리즘의 비교 분석)

  • Kim, Su-Yeon;Gang, Hyeon-Guk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper, we compared and analyzed two new models of cyclic packet dropping algorithm, Adaptive Cyclic Packet Dropping algorithm (ACPD), and Non-adaptive Cyclic Packet Dropping algorithm (NCPD) with RIO. The ACPD algorithm drops adaptively packets for the congestion control, as predicting traffic pattern between each cycle. Therefore the ACPD algorithm makes up for the drawback of RIO algorithm and minimizes the wastes of the bandwidth being capable of predicting in the NCPD algorithm. We modelled two cyclic packet drop algorithms and executed a simulation and analyzed the throughput and packet drop rate based on Sending Priority changing dynamically depending on network traffic. In this algorithm, applying the strict drop precedence policy, we get better performance on priority levels. The results show that two new algorithms may provide more efficient and stricter drop precedence policy as compared to RIO independent of traffic load. The ACPD algorithm can provide better performance on priority levels and keep stricter drop policy than other algorithms.

Method for Reduction of Power Consumption using Buffer Processing Time Control in Home Gateway (홈 게이트웨이에서 서비스 특성에 따른 버퍼 동작 시간 제어를 통한 전력 소비 감소 방안)

  • Yang, Hyeon;Yu, Gil-Sang;Kim, Yong-Woon;Choi, Seong-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.69-76
    • /
    • 2012
  • This paper proposes an efficient power consumption scheme using sleep mode in home gateway. The scheme by this paper classifies incoming real time packet and non-real time packet in home gateway and delay non-real time packet. Therefore, the home gateway can have longer sleep time because non-real time packet can get additional delay time by proposing mechanism using timer. We use non-preemptive two priority queueing model for performance analysis. As a results, we verify that power consumption of proposed scheme is reduced more than existing scheme by delay of non-real time traffic.

A Packet Prioritization Scheme for supporting QoS in Wireless Sensor Networks (무선 센서네트워크에서 QoS 지원을 위한 패킷 우선순위 기법)

  • Rhee, Yun-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2010
  • In this paper, we propose a packet prioritization scheme using preamble signal and backoff time which is designed to provide a differentiated channel occupation with a packet priority in wireless sensor networks. This scheme aims at enabling QoS such as fast delivery of high priority packets by reducing their backoff time as well as thus securing higher channel occupation. We expect that it could also improve the channel utilization of the entire network by avoiding unnecessary channel contention. For the purpose, we add new features of multiple queue and preamble modification to the TinyOS based B-MAC. This scheme achieves 82-88% reduction in delivery time of high priority packets, thus it enables realtime support for urgent applications.

Performance Analysis of HomePNA 2.0 MAC Protocol (HomePNA 2.0 MAC 프로토콜의 성능 분석)

  • Kim, Jong-Won;Kim, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.877-885
    • /
    • 2005
  • The Home Phoneline Networking Alliance (HomePNA) 2.0 technology can establish a home network using existing in-home phone lines, which provides a channel rate of 4-32 Mbps. HomePNA 2.0 Medium Access Control(MAC) protocol adopts an IEEE 802.3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method, Quality of Service(QoS) algorithm, and Distributed Fair Priority Queuing(DFPQ) collision resolution algorithm. In this paper, we propose some mathematical models about the important elements of HomePNA 2.0 MAC protocol performance, which are Saturation Throughput, Packet Delay and Packet Jitter. Then, we present an overall performance analysis of HomePNA 2.0 MAC protocol along with simulations.

Congestion Control Mechanism for Efficient Network Environment in WMSN (무선 멀티미디어 센서 네트워크에서 효율적인 네트워크 환경을 위한 혼잡 제어 메커니즘)

  • Park, Jeong-Hyeon;Lee, Sung-Keun;Oh, Won-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.289-296
    • /
    • 2015
  • Wireless multimedia sensor network senses and transfers mass multimedia data. Also, it is sensitive to latency. This thesis proposes a routing technique based on traffic priority in order to improve the network efficiency by minimizing latency. In addition, it proposes a congestion control mechanism that uses packet service time, packet inter-arrival time, buffer usage, etc. In this thesis, we verified the reduction of packet latency in accordance with the quality level of packet as a result of the performance analysis through the simulation method. Also, we verified that the proposed mechanism maintained a reliable network state by preventing packet loss due to network overload.

A priority control algorithm using hop count for streamming mode CLS (스트림 모드 CLS에서 홉 카운터를 이용한 우선 순위 제어 알고리즘)

  • 차현철;강상길;한기준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1840-1850
    • /
    • 1998
  • In this paper, we propose a priority control algorithm using hop count, called HC-PC(Priority Control Algorithm using Hop-Count) for steaming mode CLS, in wide area ATM networks. In our HC-PC algorithm, hop count of packet is increased by one as traverse CLS hop and is used as loss priority when a CLS buffer is congested. That guards packets with higher priority form congestion. The average packet loss probabilities are evaluated via mathematical analysis for HC-PC algorithm case and no priority control case. The simulationresults indicate that our algorithm may offer better performance in terms of loss fairness for pathe length and yield high utilization of newtork resource.

  • PDF

The Number of ONU based Priority Scheduling Mechanism for IPTV Multicast Service (IPTV 멀티캐스트 서비스를 위한 ONU 수 기반 우선순위 스케줄링 기법)

  • Kwon, Young-Hwan;Choi, Jun-Kyun
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.217-222
    • /
    • 2009
  • This paper proposes the number of Optical Network Unit (ONU) based priority scheduling mechanism over Ethernet Passive Optical Network (EPON) to support multicast Quality of Service (QoS) for Internet Protocol Television (IPTV) service. Multicast QoS is effected by the receivers' number of a packet because multicast efficiency is determined by how many receivers are received multiple copied packets. Therefore, the proposed mechanism assigns a priority with the number of ONUs to allocate high priority to IPTV services used by many people and firstly transmits a packet with high priority. By doing so, we show that the proposed mechanism support favorite IPTV services with better and stable QoS in spite of congestion.

Packet Scheduling Algorithm for QoS Enhancement in WBAN (WBAN 환경에서 QoS 향상을 위한 패킷 스케줄링 알고리즘)

  • Kim, JiWon;Kim, Jinhyuk;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.99-108
    • /
    • 2014
  • WBAN(Wireless Body Area Network) is network to support medical and non-medical services. It is susceptible to loss and delay of data. WBAN is required to satisfy many kinds of demands such as a variety of data rate and a data priority for providing various service. In this paper scheduling algorithm, considering a data priority and transmission delay time, is proposed to improve service quality of WBAN. The proposed algorithm operates by allocating a channel to a flow with longer transmission delay. When a packet, in a queue of herb, is left within a certain period, the packet is assigned a channel and transmitted according to a data priority. Through the comparison with other existing scheduling algorithms, it is confirmed that QoS is improved due to higher arrival probability of medical data and less delay time in the proposed algorithm.