• Title/Summary/Keyword: packed-bed reactor

Search Result 178, Processing Time 0.02 seconds

Electrolytic Treatment of Ammonium Nitrogen and Nitrate Nitrogen by Bipolar Packed Bed Electrolytic Cell (충전복극전해조에 의한 암모니아성 및 질산성 질소의 전해처리)

  • Yun, Churl-Jong;Yu, Hyun-Chul;Kim, Jung-Sup;Lee, Bong-Seob;Kawk, Myoung-Hwa;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.686-689
    • /
    • 2005
  • This study was conducted to investigate the effect of ammonium and nitrate nitrogen removal to applied voltage, electrolytic time and activated carbon packing height. Batch bipolar packed bed electrolytic cell reactor was packed with $4{\times}8$ mesh granular activated carbon (GAC). Afterward electrolysis was performed in 20 V for 30 min. As a result, as the filling height adjusted to 80 mm high, the removal efficiency of ammonium nitrogen was 99.9%. and as the electrolytic time varied to 60 min, the removal efficiency of ammonium nitrogen was 97.6%. and in case of continuous electrolytic treatment of ammonium and nitrate nitrogen removal efficiency of total nitrogen was over 80% in bipolar packed bed electrolytic cell reactor for 72 hours as the packing height, sample concentration and input rate of sample adjusted to 280 mm, 30 mg/L, 6.7 mL/min, respectively.

Production of Salicylic Acid from Naphthalene by Immobilized Pseudomonas sp. Strain NGK1

  • Shinde, Manohar;Kim, Chi-Kyung;Karegoudar, Timmanagouda-Baramanagouda
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.482-487
    • /
    • 1999
  • The Pseudomonas sp. strain NGK1 (NCIM 5120) was immobilized in calcium alginate, agar, and polyacrylamide gel matrices. The salicylic acid-producing capacity of freely suspended cells was compared with immobilized cells in batches with a shake culture and continuous culture system in a packed bed reactor. Freely suspended cells ($4\times10^{10}cfu/ml$) produced 12 mM of salicylic acid, whereas cells immobilized in calcium alginate ($1.8\times10^{11}$cfu/g beads), agar ($1.8\times10^{11}$cfu/g beads), and polyacrylamide ($1.6\times10^{11}$cfu/g beads) produced 15, 11, and 16mM of salicylic acid, respectively, from naphthalene at an initial concentration of 25 mM. The continuous production of salicylic acid from naphthalene was investigated in a continuous packed bed reactor with two different cell populations. The longevity of the salicylic acid-producing activity of the immobilized cells from naphthalene was also studied in semi continuous fermentations. The immobilized cells could be reused 18, 13, and more than 20 times without losing salicylic acid-producing activity in calcium alginate-,agar-, and polyacrylamide-entrapped cells, respectively. The study reveals a more efficient utilization of naphthalene and salicylic acid production by the immobilized Pseudomonas sp. strain NGK1 as compared to the free cells.

  • PDF

Characteristics of Non-Thermal Plasma Process for Air Pollution Control (대기오염 물질 저감을 위한 저온 플라즈마 반응공정의 특성)

  • 송영훈;신동남;신완호;김관태;최연석;최영석;이원남;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.247-256
    • /
    • 2000
  • Basic characteristics of non-thermal plasma process to remove C2H4 and NO have been experimentally investigated with a packed-bed type reactor and an ac power supply. The performance of the non-thermal plasma generated by ac power supply was compared with that of a wire-plate type reactor equipped with a pulsed power supply. The result shows that the non-thermal plasma can be effectively generated with an AC power supply that can be easily fabricated with conventional techniques. In order to understand the basic reaction mechanisms of the non-thermal plasma process, parametric tests for different carrier gases(air and nitrogen) and for different reaction pathways have been performed. The test results show that O3 generated by non-thermal plasma plays an dominant role to oxidize C2H4 and NO over N and O radicals when these pollutant gases are carried by dry air under room temperature condition. Experimental observations, however, indicate that N and O radicals can significantly affect on the removal process of the pollutant gases under certain conditions.

  • PDF

The Behavior of Pellet Packed-bed Electrodes Reactor -Graphite Pellet Electrode- (펠레트 충전층 전극 반응기의 특성 -흑연 펠레트 전극-)

  • Kim, Hark-Joon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.657-662
    • /
    • 1992
  • For describing the bipolar packed-bed electrode cell filled with graphite pellete electrode, the application of the model of equivalent circuit was studied. The ratio between the Faradaic current through bipolar electrodes and the applied current was dependent on the resistance coefficient, specific conductivity of electrolyte, and electrolyte circulation rate. The ratio of the Faradaic current through bipolar electrodes to the applied current increased with the applied current(or cell voltage), but decreased with the increase of electrolytic conductivity and circulation rate of the electrolyte.

  • PDF

Continuous Ethanol Production from Starch by Simultaneous Saccharification and Fermentation in a Tapered Column Fermentor (역원추형 발효조에서의 동시당화발효에 의한 전분으로 부터의 연속 에탄올 발효)

  • 김철호;유연우김철이상기
    • KSBB Journal
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 1990
  • In an attempt to develop a novel process for ethanol production from starch, a simultaneous saccharification and fermentation (SSF) process using Zymomonas mobilis and amyloglucosidase (AMG) was studied in continuous modes. Compared with a conventional cylindrical column type of fermentor, the tapered column type of fermentor was found to be superior in terms of reactor performance for ethanol fermentation. The tapered columm fermentor packed with coimmobilized Z. mobilis and AMG alleviated the problems which were associated with CO2 evolution and provided a significantly better flow pattern for both liquid and gas phases in the fermentor without channelling. However, the fluidized bed type of tapered column fermentor using flocculent strain of Z. mobiles and immobilized AMG showed lower productivity (5.2g/1/h) than that of packed bed type of tapered column fermentor(9.2g/l/h).

  • PDF

Effects of Acrylonitrile and Acrylamide on Nitrile Hydratase Action of Brevibacterium sp. CH1 and CH2

  • Lee, Cheo-Young;Hwang, Jun-Sik;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.182-187
    • /
    • 1991
  • The effects of acrylonitrile and acrylamide on the enzyme action of nitrile hydratase of Brevibacterium sp. CH1 and CH2 strains used for the biotransformations of nitriles were studied. The excessive substrate (acrylonitrile) and product (acrylamide) inhibited the enzyme activity competitively. In comparison with 0.2 mol/l of CH1 strain, the substrate inhibition of CH2 strain began to appear only at a high acrylonitrile concentration of 0.91 mol/l. In a packed bed reactor, dispersed plug flow model was proposed and this model was proved to be valid by the experiment. Also acrylamide productivity decreased sharply when acrylamide concentration in the substrate solution exceeded 20% (wt/v).

  • PDF

Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System (Pilot 혐기-호기 공정을 이용한 염색폐수의 생물학적 처리)

  • 박영식;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.11-20
    • /
    • 2001
  • An anaerobic sludge-aerobic fixed-bed biofilm(packed with ceramic support carrier of 1 inch size) reactor system was built up to treat textile wastewater. The efficiency of reactor system was examined by determining the effects of textile wastewater ratio(from 25% to 100% at HRT 24 h). The influent range of SCOD concentration and color were 1,036~1,357 mg/L, and 1,487~1,853 degree, respectively. When textile wastewater ratio was 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% and the removal efficiency of the whole system were 75.8%. Color removal efficiency by the anaerobic stage were 45.4%(soluble color), and the removal efficiency of the whole system were 70.2%. In the A/A reactor system, the aerobic stage played an important role in removing both color and COD as well as anaerobic stage.

  • PDF

A study on the analysis of bipolar packed-bed electrode reactor for complex reactions (복잡반응에 대한 복극성 고정층 전극반응기 해석)

  • Kim Hark-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 1999
  • A mathematical analysis of bipolar electrode reactor model for complex electrochemical reactions could estimate total current from time-concentration data, which coincided well with experimental total current data. Thus behaviour of bipolar electrode reactor could be described by a proposed simulation model. This paper demonstrates how such a model can be used a useful tool in the design for pilot plant experimentation.

Ethanol Production from Lactose by Immobilized Reactor System Using a Fusant Yeast Strain of Saccharomyces cerevisiae and Kluyveromyces fragilis

  • Lee, Chu-Hee;Bang, Jeong-Hee;Hyun, Nam-Doo
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.355-359
    • /
    • 1992
  • Yeast cells of a fusant strain constructed by protoplast fusion of Saccharomyces cerevisiae and Kluyveromyces frugilis were immobilized on calcium alginate beads. The increment of the ethanol tolerance of this strain to 8.0%, when compared with the parent K, fragilis, was confirmed. Based on the results from jar fermentation, a packed-bed reactor of theh immobilized yeast cells was operated. The optimal performance of the immobilized yeast reactor for ethanol production was achieved when supplying 10% lactose (suplemented 1.0% yeast extract) at a temperature of 30.deg.C. The maximal ethanol productivity was obtained as 13.3 g/I/hr at a dilution rate of $0.76 hr^{-1}$.

  • PDF

Studies on Whole Cell Immobilized Glucose Isomerase - II. Operational Studies on the Batchwise and Continuous Isomerization of D-Glucose - (포도당 이성화 효소의 세포 고정화에 관한 연구 - 제 2 보 : 회분식 및 연속 반응조를 사용한 포도당의 이성화 -)

  • Ahn, Byung-Yoon;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-257
    • /
    • 1979
  • Using the whole cell immobilized glucose isomerase which was prepared in the previous work (Korean J. Food Sci. & Technol., 11(3), 192 (1979), the specific activity of the immobilized enzyme was 48.1 units in the batch reaction system and 114 units in the continuous reaction system per g of matrix, respectively. In the continuous reactor the voidity was 0.36, which was suitable for the packed bed reactor. This immobilized enzyme showed a good operational stability of 115 days of half life which was sufficient for the continuous operation. The experimental result showed that 55 % of the substrate was converted to the product in the packed bed reactor. The productivity was dependent on the flow rate, column geometry, enzyme loading, and substrate concentration. An intrapaticle diffusion was observed by the effectiveness factor of 0.75 and interparticle diffusion by the decrease of Km' with increasing the superficial velocity.

  • PDF