• Title/Summary/Keyword: pacemaker

Search Result 222, Processing Time 0.304 seconds

Convergence Comparison of Metal Artifact Reduction Rate for Pacemaker Insertion of CT Imaging Phantoms in the Raw Data with MAR Algorithm (심박조율기 삽입 팬텀의 CT영상 원시데이터에 금속인공물감소 알고리즘 적용 시 금속인공물 감소율의 융합적 비교)

  • Kim, Hyeon-ju;Yoon, Joon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • In the analyzed cardiac CT algorithm applied when comparing the MAR self-made metal artifact reduction in pacemaker inserted phantom degree. Result of comparing the energy value by CT showed a decrease in the CT value in the case of BKG 40 KeV in WSA maximum decreased to 663.2% in the case of 140 KeV BHA were increased a maximum of 56.2%. In addition, the maximum was decreased by approximately 145% based on a 70 KeV artifacts in CT value comparison by type WSA, BHA was to increase up to approximately 46.38%. MAR Algorithm is believed to provide a more quality cardiac CT image if the energy changes, or have the effect that by type and irrespective of reduced metal artifacts occurrence of artifacts applied to the pacemaker when tracking a heart CT scan after inserting MAR algorithm.

Modulation of Pacemaker Potentials by Pyungwi-San in Interstitial Cells of Cajal from Murine Small Intestine - Pyungwi-San and Interstitial Cells of Cajal -

  • Kim, Jung Nam;Song, Ho Jun;Lim, Bora;Kwon, Young Kyu;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • Objective: Pyungwi-san (PWS) plays a role in a number of physiologic and pharmacologic functions in many organs. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow waves in the gastrointestinal (GI) tract. We aimed to investigate the beneficial effects of PWS in mouse small-intestinal ICCs. Methods: Enzymatic digestion was used to dissociate ICCs from the small intestine of a mouse. The whole-cell patch-clamp configuration was used to record membrane potentials from the cultured ICCs. Results: ICCs generated pacemaker potentials in the GI tract. PWS produced membrane depolarization in the current clamp mode. Pretreatment with a $Ca^{2+}$-free solution and a thapsigargin, a $Ca^{2+}$-ATPase, inhibitor in the endoplasmic reticulum, eliminated the generation of pacemaker potentials. However, only when the thapsigargin was applied in a bath solution, the membrane depolarization was not produced by PWS. Furthermore, the membrane depolarizations due to PWS were inhibited not by U-73122, an active phospholipase C inhibitor, but by chelerythrine and calphostin C, protein kinase C inhibitors. Conclusions: These results suggest that PWS might affect GI motility by modulating the pacemaker activity in the ICCs.

The Action and Pacemaker Potential in the Frog Truncus Arteriosus (개구리 대동맥의 활동전압 및 Pacemaker 전압에 관한 연구)

  • Earm, Yung-E;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.119-128
    • /
    • 1982
  • The frog truncus arterious were studied with conventional glass microelectrode technique in order to elucidate the underlying mechanism of spontaneous pacemaker activity. The analyses were focussed on the ionic nature of pacemaker current by changing the concentrations of extracellular $K^+$ and, $Na^+$, or by using blockers of K- and Ca-current and chronotropic transmitters. 1) The action potential of the spontaneously active truncus arteriosus has some characteristic feature of maximal distolic potential ranged from -65 to -75 mV, resting potential from -45 to -50 mV and overshoot voltage about +30 mV, respectively. Duration of the action potential taken from rapid upstroke to maximal diastolic potential was about 600 msec. Usual discharge rate was $25{\sim}30/min$ at room temperature $(18{\sim}20^{\circ}C)$. 2) The sensitivity of the resting membrane potential to change extracellular potassium concentrations $(0{\sim}12\;mM)$ was relatively low. Transient hyperpolarization was appeared in the 12 mM K Ringer after 10 min exposure to 0 mM K and it could be related to Na-pump reactivation by high potassium. 3) Reduction of extracellular sodium concetrations diminished the amplitude and frequency of the action potential. In Ringer solution containing 30% Na (substituted by equimolar Tris), spontaneous activity stopped but reappeared as very slow and small action potential. There was no spotaneous activity in zero Na Ringer solution. 4) Caesium(10 mM), K-current blocker decreased the frequency of the action potential and also pacemaker depolarization. Manganese (2 mM) known to be Ca-current antagonist, blocked spontaneous activity completely. 5) Adrenaline and acetylcholine had no chronotropic effect. But adrenaline increased the duration of plateau phase and the magnitude of the action potential in the follower cell. It is concluded that K-, Na-and Ca-current components are involved in the genesis of spontaneous activity of the frog truncus arteriosus like cardiac pacemaker tissues. But the insensitivity of truncus arteriosus to adrenaline and acetylcholine indicates that there are some different control mechanisms of spontaneous rhythm in two tissues.

  • PDF

Atrial pacemaker implantation through left subclavian vein puncture (쇄골하정맥을 이용한 J 형의 전극도자를 가진 심방 Pacemaker 이식치험 2예)

  • Lee, Du-Yeon;Hong, Seung-Rok;Lee, Ung-Gu
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.190-198
    • /
    • 1983
  • The management of cardiac arrhythmias by cardiac pacing has increased greatly since the treatment of complete heart block with an external transcutaneous pacemaker in 1952, followed by the use of myocardial wires connected to an external pulse generation, by external transvenous pacing, and then by transvenous pacing with implantable components in thoracic wall.By now, the three bases of modern cardiac pacing for bradyarrhythmias had been established [1] an implantable device [2] the transvenous approach [3] the ability of the pacemaker to sense cardiac activity and modify its own function accordingly. In transvenous implantation of a pacemaker, any one of four vessels at the root of the neck is suitable for passage of the electrode - cephalic vein, external jugular vein, internal jugular vein, costo-axillary branch of the axillary vein. The new technique of direct puncture of the subclavian vein, either percutaneously or after skin incision only has been made, is invaluable & is used routinely. We have experienced one 25 years old patient who had rheumatic mitral stenosis & minimum aortic regurgitation with sinus bradycardia associated with premature atrial tachycardia & another 54 years old female patient who was suffered from sick sinus syndrome with sinus bradycardia & sinus arrest. The 1st patient was taken open mitral commissurotomy & aortic valvuloplasty and then was taken atrlal pace-maker implantation through If subclavian puncture method in post-op 14 days, and the second patient was taken atrial pacemaker implantation through If subclavian puncture method. Their postop course was in uneventful & were discharged, without complication. Their condition have been good to now.

  • PDF

Permanent Transvenous Cardiac Pacing in a Beagle Dog With a Third Degree Atrioventricular Block (경피적 접근을 이용한 영구 박동조절기(pacemaker) 장착을 통한 3도 방실 차단이 있는 비글종 개의 치료)

  • Lee, Seung-Gon;Moon, Hyeong-Sun;Lee, Moo-Hyun;Hyun, Chang-Baig
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.414-418
    • /
    • 2007
  • A 2.8-year-old intact female Beagle dog (weighing 11kg) was referred with the primary complaint of exercise intolerance with occasional syncope. Physical examination revealed irregularly irregular heart rhythm with persistent pulse deficits. The 12-lead surface ECG showed a third degree heart block. Permanent transvenous cardiac pacing with a bipolar implantable pacemaker was performed in the right ventricle. After pacemaker implantation, the dog did not show syncopal episode and is currently able to take a walk with an owner. No side effects associated with permanent pacemaker implantation has been observed to date.

Development of Energy Harvesting Technologies Platform for Self-Power Rechargeable Pacemaker Medical Device. (자가발전 심장박동기를 위한 에너지 수확 플랫폼 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Kim, Byunng-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.619-626
    • /
    • 2019
  • The advances of semiconductor and circuitry technology dovetailed with nano processing techniques have further enhanced micro-miniaturization, sensitivity, longevity and reliability in MID(Medical Implant Device). Nevertheless, one of the remaining challenges is whether power can sufficiently and continuously be supplied for the operation of the MID. Self-powered MID that harvest biomechanical energy from human motion, respiratory and muscle movement are part of a paradigm shift. In this paper, we developed a rechargeable pacemaker through self-power generation with the triboelectric nanogenerator. We demonstrate a fully implanted pacemaker based on an implantable triboelectric nanogenerator, which act as a storage as well as active movement on a large-animal(dog) scale. The self-power pacemaker harvested from animal motion is 2.47V, which is higher than the required pacemaker device sensing voltage(1.35V).

Effects of Radio Frequency Electromagnetic Fields Emitted by WCDMA Mobile Phones on Pacemakers and ICDs (WCDMA 휴대전화 전자파가 인공심장 박동기 및 이식형 제세동기에 미치는 영향)

  • Chung, Jai Won;Choi, Soo Beom;Park, Jee Soo;Kim, Deok Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.148-154
    • /
    • 2015
  • Reports show that global system for mobile communication (GSM) mobile phones, or two-generation (2G) mobile phones, could affect functions of pacemakers and implantable cardioverter defibrillators (ICDs). In this study, we evaluated the effects of radio frequency electromagnetic fields (RF-EMFs) emitted by wideband code division multiple access (WCDMA) mobile phones, which were third-generation (3G) mobile phones, on pacemakers and ICDs. Five pacemakers and three ICDs were subjected to in-vitro test using a ECG simulator. We used a WCDMA module (average power : 0.25 W, frequency band : 1950 MHz) instead of a real WCDMA mobile phone. To assess the effects of the WCDMA module on pacemakers and ICDs, each implantable device was placed in close proximity (within 3 mm) to the WCDMA module for 5 min. As a result, no effects were observed on the five pacemakers and three ICDs for the RF-EMFs emitted by the WCDMA module. Because WCDMA mobile phones have the higher frequency band (1800-2200 MHz) and lower power output (0.01-0.25 W) than GSM moboile phone, the RF-EMFs emitted by WCDMA mobile phones do not affect patients with pacemaker or ICD.

Pituitary Adenylate Cyclase-activating Polypeptide Inhibits Pacemaker Activity of Colonic Interstitial Cells of Cajal

  • Wu, Mei Jin;Kee, Keun Hong;Na, Jisun;Kim, Seok Won;Bae, Youin;Shin, Dong Hoon;Choi, Seok;Jun, Jae Yeoul;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.435-440
    • /
    • 2015
  • This study aimed to investigate the effect of pituitary adenylate cyclase-activating peptide (PACAP) on the pacemaker activity of interstitial cells of Cajal (ICC) in mouse colon and to identify the underlying mechanisms of PACAP action. Spontaneous pacemaker activity of colonic ICC and the effects of PACAP were studied using electrophysiological recordings. Exogenously applied PACAP induced hyperpolarization of the cell membrane and inhibited pacemaker frequency in a dose-dependent manner (from 0.1 nM to 100 nM). To investigate cyclic AMP (cAMP) involvement in the effects of PACAP on ICC, SQ-22536 (an inhibitor of adenylate cyclase) and cell-permeable 8-bromo-cAMP were used. SQ-22536 decreased the frequency of pacemaker potentials, and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. The effects of SQ-22536 on pacemaker potential frequency and membrane hyperpolarization were rescued by co-treatment with glibenclamide (an ATP-sensitive $K^+$ channel blocker). However, neither $N^G$-nitro-L-arginine methyl ester (L-NAME, a competitive inhibitor of NO synthase) nor 1H-[1,2,4]oxadiazolo[4,3-${\alpha}$]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) had any effect on PACAP-induced activity. In conclusion, this study describes the effects of PACAP on ICC in the mouse colon. PACAP inhibited the pacemaker activity of ICC by acting through ATP-sensitive $K^+$ channels. These results provide evidence of a physiological role for PACAP in regulating gastrointestinal (GI) motility through the modulation of ICC activity.

5-Hydroxytryptamine Generates Tonic Inward Currents on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

  • Shahi, Pawan Kumar;Choi, Seok;Zuo, Dong Chuan;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Lee, Jun;Kim, Young-Dae;Park, Chan-Guk;Kim, Man-Yoo;Shin, Hye-Rang;Oh, Hyun-Jung;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • In this study we determined whether or not 5-hydroxytryptamine (5-HT) has an effect on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of 5-HT on pacemaker activities were investigated using a whole-cell patch-clamp technique, intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) analysis, and RT-PCR in ICC. Exogenously-treated 5-HT showed tonic inward currents on pacemaker currents in ICC under the voltage-clamp mode in a dose-dependent manner. Based on RT-PCR results, we found the existence of 5-$HT_{2B,\;3,\;4,\;and\;7}$ receptors in ICC. However, SDZ 205557 (a 5-$HT_4$ receptor antagonist), SB 269970 (a 5-$HT_7$ receptor antagonist), 3-tropanylindole - 3 - carboxylate methiodide (3-TCM; a 5-$HT_3$ antagonist) blocked the 5-HT-induced action on pacemaker activity, but not SB 204741 (a 5-$HT_{2B}$ receptor antagonist). Based on $[Ca^{2+}]_i$ analysis, we found that 5-HT increased the intensity of $[Ca^{2+}]_i$. The treatment of PD 98059 or JNK II inhibitor blocked the 5-HT-induced action on pacemaker activity of ICC, but not SB 203580. In summary, these results suggest that 5-HT can modulate pacemaker activity through 5-$HT_{3,\;4,\;and\;7}$ receptors via $[Ca^{2+}]_i$ mobilization and regulation of mitogen-activated protein kinases.

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Kim, Hyun Jung;Ha, Ki-Tae;Kim, Byung Joo
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results: Ginsenoside Re ($20-40{\mu}M$) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 50-[${\beta}-thio$]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive $K^{+}$ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester ($100{\mu}M$), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium ($K^{+}$) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.