• Title/Summary/Keyword: pJLA503

Search Result 3, Processing Time 0.017 seconds

Gene Cloning and Expression of Thermostable DNA Polymerase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 DNA Polymerase의 유전자 클로닝 및 발현)

  • Seo, Min-Ho;Kim, Bu-Kyoung;Kwak, Pyung-Hwa;Kim, Han-Woo;Kim, Yeon-Hee;Nam, Soo-Wan;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The gene encoding Thermus thermophilus HJ6 DNA polymerase (Tod) was cloned and sequenced. The open reading frame (ORF) of the Tod gene was composed of 2,505 nucleotides and encoded a protein (843 amino acids) with a predicted molecular weight of 93,795 Da. The deduced amino acid sequence of Tod showed 98% and 86% identities to the Thermus thermophilus HB8 DNA pol and Thermus aquaticus DNA pol, respectively, The Tod gene was expressed under the control of the bacteriophage $\lambda$ promoters PR and PL on the expression vector pJLA503 in Escherichia coli strain BL21 (DE3) codon plus. The expressed enzyme was purified by heat treatment, $HiTrap^{TM}$ Q column, and $HiPrep^{TM}$ Sephacryl S-200 HR 26/60 column chromatographies. The optimal temperature and pH for DNA polymerase activity were found to be $75{\sim}80^{\circ}C$ and 9.0, respectively. The optimal concentrations of $Mg^{2+}$ and $Mn^{2+}$ were 2.5 mM and 1 mM, respectively. The enzyme activity was activated by divalent cations, and was inhibited by monovalent cations. The result of the PCR experiment with Tod DNA polymerase indicates that this enzyme might be useful in DNA amplification and PCR-based applications.

Purification and Characterization of the N-terminally Truncated DNA Polymerase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 N-말단 결실 DNA Polymerase의 정제 및 특성)

  • Jeon, Sung-Jong;Seo, Min-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.158-162
    • /
    • 2010
  • The gene encoding N-terminally truncated Tod polymerase ($\Delta$Tod polymerase) from Thermus thermophilus HJ6 was expressed in Escherichia coli under the control of the lambda pR and pL tandem promoters on the expression vector pJLA503. The N-terminal domain (250 amino acids) of Tod polymerase was removed without significant effect on enzyme activity and stability, while no 5'$\rightarrow$3' exonuclease activity was detected. The $\Delta$Tod polymerase was verified to possess very efficient reverse transcriptase (RT) activity in the presence of $MgCl_2$. The cDNA can also be amplified in the polymerase chain reaction (PCR) with this mutant enzyme. The $\Delta$Tod polymerase was exhibited higher activity than the Taq polymerase in a one-step RT-PCR.

Gene Cloning and Expression of Trehalose Synthase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 Trehalose Synthase의 유전자 클로닝 및 발현)

  • Kim, Hyun-Jung;Kim, Han-Woo;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • A hyperthermophilic bacteria (strain HJ6) was isolated from a hot springs located in the Arima-cho, Hyogo, Japan. The cells were long-rod type ($2-4{\mu}m$), about $0.4{\mu}m$ in diameter. The pH and temperature for optimal growth were 6.5 and $80^{\circ}C$, respectively. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that HJ6 belonged to the genus Thermus thermophilus (Tt). The gene encoding the Trehalose synthase (TS) was cloned and sequenced. The open reading frame (ORF) of the TtTS gene was composed of 2,898 nucleotides and encoded a protein (975 amino acids) with a predicted molecular weight of 110.56 kDa. The deduced amino acid sequence of TtTS showed 99% and 83% identities to the Thermus caldophilus TS and Meiothermus ruber TS, respectively. TtTS gene was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for Trehalose synthase activity were found to be $80^{\circ}C$ and 7.5, respectively. The half-life of heat inactivation was about 40 min at $90^{\circ}C$. The maximum trehalose conversion rate of maltose into trehalose by the enzyme increased as the substrate concentration increased, and reached 55.7% at the maltose concentration of 500 mM, implying that the enzyme conversion was dependent of the substrate concentration.