• Title/Summary/Keyword: pH stable

Search Result 2,313, Processing Time 0.03 seconds

Functional Properties of Mucilage and Pigment Extracted from Opuntia ficus-indica (선인장 열매로부터 추출된 점질물 및 색소의 기능성)

  • Lee, Sam-Pin;Whang, Key;Ha, Young-Duck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.821-826
    • /
    • 1998
  • Functional properties of mucilage and pigment extracted from Opuntia ficus-indica var. saboten were determined at various temperatures, pHs and alcohol concentrations. The crude mucilage extracted from pickly pear showed pH 4.2, 0.14% total acidity and 8.1% total soluble solid content(w/w, wet basis). Polysaccharide was purified from mucilage extract by isopropanol precipitation. Intrinsic viscosity of polysaccharide was 18.1dl/g and decreased with increasing KCl concentration. Relative viscosity and color stability of mucilage extract were determined with capillary viscometer and spectrophotometer at 534nm, respectively. In additions of 1~20%(v/v) ethanol, the red pigment of mucilage extract was very stable, but relative viscosity, increased gradually. For heating above 7$0^{\circ}C$, the stability of red pigment decreased drastically, but rheological property of mucilage was not changed. During storage, the red pigment was extremely unstable at above pH 8.3. At both pH 3.0 and pH 4.2, the red pigment was the most stable at 4$^{\circ}C$ for 18 days. In the case of storage at 37$^{\circ}C$, pigment of mucilage extract at pH 3.0 was destroyed more quickly than that at pH 4.2. Natural mucilage extract(pH 4.2) showed the good stability of red pigment at 3$0^{\circ}C$ for 10 days.

  • PDF

Mineralogical Study of the Granite Weathering in the Seoul Area: Water-Rock Interaction in the Namsan Granite (남산 화강암의 풍화 및 광물-물 반응에 관한 연구)

  • Lee, Soo-Jae;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 1994
  • The weathering of the Namsan granite was studied in terms of sorption process. The Namsan granite consists mainly of quartz, alkali feldspar, plagioclase (${Ab_{85}An_{15}}-Ab_{100}$ and biotite with small amounts of sericite, magnetite and ilmenite. The kinetic factors for altering the granite body are the proton and hydroxyl ions derived from the reaction of water and mineral. There are two different types of pH variation curves for rocks of different mineral assemblages. when powdered granite was dispersed in distilled water under ambient condition. The sorption-process proceeds by three steps for fresh granite; (1) the initial rapid pH-rise to 10 by the uptake of proton by negatively charged mineral surfaces, (2) the gradual pH-down, and (3) the stable pH tail between 7.1-7.5. For somewhat weathered granites, the sorption proceeds; (1) the initial rapid pH-down to 4.8, (2) the slight pH-rise and slow ph-down, and (3) the stable pH tail between 5.0-5.3. The reaction rate is controlled by the density of adsorbable sites, the solubility of the mineral, pH of the system and formation of amorphous gel and gibbsite. Amorphous gel floates on the surface of the solution while stirring the powdered granite and then is transformed into gibbsite in an hour or so. The pH saturation values for -325 mesh fresh granite from 5 m depth is about pH 10 when rock/water ratio is over 10g/200 ml.

  • PDF

Thermal Stability of the Major Color Component, Cyanidin 3-glucoside, from a Korean Pigmented Rice Variety in Aqueous Solution (한국산 유색미의 주요성분인 Cyanidin 3-glucoside의 수용액에서의 열안정성)

  • Jo, Man-Ho;Yoon, Hye-Hyun;Hahn, Tae-Ryong
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.245-248
    • /
    • 1996
  • Thermal stability of the major color component, cyanidin 3-glucoside, isolated from Korean pigmented rice (Oryza sativa var. Suwon 415) were investigated to explore possible application of value-added natural colors as food additives. The anthocyanin showed red and blue color with maximum absorption peaks at 511 nm and 572 nm in acidic (pH 2.0) and alkaline (pH 9.0) buffer solutions, respectively, and the thermal degradation reactions were carried out with different temperature ranges at $50{\sim}95^{\circ}C$. Degree of degradation was determined with UV/Vis spectra which indicate characteristic absorption patterns with sharp isosbestic points at 350 nm (pH 2.0), and 275, 310, and 405 nm (pH 9.0). Thus the reaction follows simple first-order kinetics. The anthocyanin was very stable against heat at acidic pH and relatively stable at alkaline pH with half-life values of 50.3 hr and 0.6 hr at $70^{\circ}C$, respectively. The activation energies and Arrhenius frequency factors of the pigment were 26.9 kcal $mol^{-1}\;and\;6.0{\times}10^{11}\;s^{-1}$, at pH 2.0, and 15.2 kcal $mol^{-1}\;and\;1.4{\times}10^{6}\;s^{-1}$, pH 9.0, and respectively.

  • PDF

Stability of Gingkoflavonglycoside in Gingko Extract Aqueous Solution (은행잎엑스 수용액 중 Gingkoflavonglycoside의 안정성)

  • Kim, Chong-Kook;Park, Man-Ki;Lee, Eun-Jin;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.213-217
    • /
    • 1989
  • To formulate the stable preparation of Gingko extract injection and to evaluate the stability of the preparation, Gingko extract aqueous solutions having various pH values were prepared and the stability of ginskoflavonglycoside (GFG) was investlfated by high performance liquid chromatography. The stability of GFG decreased as pH increased, while the water solubility of Gingko extract decreased as pH decreased. The optimal pH of the Gingko extract aqueous solution was found to be pH 6.5. The shelf life $(T_{90%})$ of the Gingko extract aqueous solution of pH 6.5 at $20^{\circ}C$ was extrapolated to be four years.

  • PDF

A Stability of Mebendazole in Suspensions (현탁액중 Mebendazole의 안정성)

  • 한관섭;용군호;김길수;허영헌
    • YAKHAK HOEJI
    • /
    • v.20 no.1
    • /
    • pp.27-31
    • /
    • 1976
  • The stability of a newly introduced anthelmintic, mebendazole, in sweetened and aqueous suspension was tested by the accelerated temperature method and the effect of pH on the stability of mebendazole was studied. Mebendazole in aqueous and sweetened suspension was very stable at the pH range from 4 to 8.

  • PDF

Influence of Controlled- and Uncontrolled-pH Operations on Recombinant Phenylalanine Ammonia Lyase Production in Escherichia coli

  • Cui, Jian Dong;Zhao, Gui Xia;Zhang, Ya Nan;Jia, Shi Ru
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.954-958
    • /
    • 2009
  • Effects of controlled- and uncontrolled-pH operations on phenylalanine ammonia lyase (PAL) production by a recombinant Escherichia coli strain were investigated at uncontrolled-pH ($pH_{UC}$) and controlled-pH ($pH_C$) of 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 in bioreactor systems. The results showed that the recombinant PAL activity was improved significantly by controlled pH strategy. Among the $pH_C$ operations, the highest PAL activities were obtained under $pH_C$ 7.5 strategy where cell mass ($OD_{600\;nm}$) and PAL activity was 1.3 and 1.8 fold higher than those of $pH_{UC}$, respectively. The maximum PAL activity reached 123 U/g. The $pH_C$ 7.5 strategy made recombinant plasmid more stable and therefore allowed easier expression of PAL recombinant plasmid, which increased PAL production. It was indicated that the new approach (controlled-pH strategy) obtained in this work possessed a high potential for the industrial production of PAL, especially in the biosynthesis of L-phenylalanine.

Purification and Characterization of Extracellular Poly(3-hydroxybutyrate) Depolymerase from Penicillium simplicissimum LAR13

  • Han, Jee-Sun;Kim, Mal-Nam
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • An extracellular PHB depolymerase was purified from P. simplicissimum LAR13 cultural medium by Sepharose CL-6B chromatography. When the fungus was grown in a basal salt medium with poly(3-hydroxybutyrate) (PHB) as the sole carbon source, PHB depolymerase production reached maximum at its stationary phase. The mycelial growth rate was higher at 37$^{\circ}C$ than at 30$^{\circ}C$ and even higher than at 25$^{\circ}C$, However, the enzyme production was lower at 37$^{\circ}C$ than 30$^{\circ}C$ or 25$^{\circ}C$. The isolated enzyme is composed of a single polypeptide chain with a molecular mass of about 36 kDa as determined by SDS-PAGE. The optimum conditions for the enzyme activity are pH 5.0 and 45$^{\circ}C$. The enzyme was stable for 30 min at a temperature lower than 50$^{\circ}C$, and stable at pH higher than 2.0 but it was unstable at pH 1.0.1 mM Fe$\^$2+/ reduced the enzyme activity by 56% and the enzyme was inhibited almost completely by 4 mM Fe$\^$2+/ . The enzyme was partially inhibited by phenylmethylsulfonyl fluoride and was very sensitive to diazo-DL-norleucine methyl esters dithiothreitol and mercuric ion. However, N-p - tosyl - L - Iysinechloromethyl ketone, p -hydroxymercuricbenzoate and N- acetylimidazole had no influence upon its activity.

Carbon Stable Isotope Ratios of Phytoplankton and Benthic Diatoms in Lake Katanuma with Reference to Those of Other Lakes

  • Kikuchi, Eisuke;Takagi, Shigeto;Shikano, Shuichi;Hideyuki, Doi
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.8-11
    • /
    • 2005
  • Carbon stable isotope ratios of producers varied in lake ecosystems. In tile present study, we tried to estimate the seasonal variations of carbon isotope ratios of phytoplankton and benthic diatoms in a strongly acidic lake ecosystem. Lake Katanuma is a volcanic, strongly acidic lake (average pH of 2.2), located in Miyagi, Japan. Only two algal species dominate in Lake Katanuma; Pinnularia acidojaponica as a benthic diatom, and Chlamydomonas acidophila as a green alga. Carbon isotope values of P. acidojaponica varied seasonally, while those of particulate organic matter, which were mainly composed of C. acidophila remained fairly stable. The differences suggested that $CO_2$ gas was more frequently limited for P. acidojaponica than C. acidophila, since high density patches of benthic diatoms were sometimes observed on the lake sediment. Generally, carbon concentration mechanisms (CCMs)of microalgae can fix bicarbonate in lakes, and affect the carbon isotope values of microalgae. While, in Lake Katanuma, CCMs of the microalgae may scarcely function because of high $CO_2$ gas concentration and low pH. This is the reason for low seasonal amplitude of carbon isotope values of phytoplankton relative to those in other lakes.

Isolation and Characterization of an Alkaline Cellulase Produced by Alkalophilic Bacillus sp. HSH-810 (알칼리성 Cellulase를 생산하는 호알칼리성 Bacillus sp. HSH-810의 분리 및 효소 특성)

  • 김지연;허성호;홍정화
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.139-146
    • /
    • 2004
  • A bacterium producing alkaline cellulase was isolated from soil, leaf mold and compost, and was identified as alkalophilic Bacillus sp. HSH-810 by morphological, cultural and biochemical determination. The optimum cul-ture condition of Bacillus sp. HSH-810 for the growth and alkaline cellulase production was $30^{\circ}C$ and pH 10.0. The maximum alkaline cellulase production was obtained when 1.0%(w/v) CMC, 0.5%(w/v) peptone, 0.02%(w/v) $CaCl_2$ and 0.02(w/v) $CoCl_2$ were used as carbon source, nitrogen source and mineral source, respectively. The optimum pH and temperature of the enzyme activity were pH 10.5 and $50^{\circ}C$, respectively. This enzyme was fairly stable in the pH range of 6.0-13.0 and at $50^{\circ}C$. For the effect of surfactants, the activity of alkaline cellulase was stable in the presence of sodium-$\alpha$-olefin sulfonate (AOS), sodium dodecyl sulfonate (SDS), Tween 20 and Tween 80, but inhibited by the presence of 0.1 linear alkyl-benzene sulfonate (LAS) sig-nificantly.