• Title/Summary/Keyword: pH of silage

Search Result 399, Processing Time 0.028 seconds

Effects on fermentation of Corn-Broiler Excreta Silage by Addition of Corn-Meal (옥수수-계분 silage 제조시 옥수수 곡분 첨가가 silage발효에 미치는 영향)

  • 고영두;김재황;김두환;임용기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.172-178
    • /
    • 1990
  • This experiment was conducted to enhance nutritional value of whole crop corn silage and increase mixture levels of broiler excreta by adding of corn meal. Treatments were included non mixture(control), adding 10, 20, 30% of broiler excreta and adding 10, 20, 30% of broiler excreta and corn meal as a fresh matter basis, respectively. One liter laboratory silos were prepared. The characteristics of fermentation and micro-organisms during the silage process were assessed. The results obtained are summarized as follows: 1. The crude fiber, NDF and ADF contents were high in whole crop corn(P(O.Ol), crude protein and crude ash contents were high in the broiler excreta(P<0.05), and NFE content was high in corn meal (P< 0.05). 2. Crude protein content of silage was increased(I'$NH_3$-N contents of silage were markedly increased with increasing levels of broiler excreta and corn meal, and was the highest in the 30% broiler excreta treatment(P$meal$ <0.05), and Flieg's value gains "very good" by showing organic acids. 5. Numbers of total bacteria and lactobacilli were $10^5$ to $10^7$ and $10^5$ to $10^6$ , respectively, and were similar in all treatment. Colliform was all but annihilated in the treatment with mixture of broiler excreta and corn rneal.orn rneal.

  • PDF

Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population

  • Miguel, Michelle;Mamuad, Lovelia;Ramos, Sonny;Ku, Min Jung;Jeong, Chang Dae;Kim, Seon Ho;Cho, Yong Il;Lee, Sang Suk
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.642-651
    • /
    • 2021
  • Objective: This study aimed to determine the effects of different roughages in total mixed ration (TMR) inoculated with or without coculture of Lactobacillus acidophilus (L. acidophilus) and Bacillus subtilis (B. subtilis) on in vitro rumen fermentation and microbial population. Methods: Three TMRs formulations composed of different forages were used and each TMR was grouped into two treatments: non-fermented TMR and fermented TMR (F-TMR) (inoculated with coculture of L. acidophilus and B. subtilis). After fermentation, the fermentation, chemical and microbial profile of the TMRs were determined. The treatments were used for in vitro rumen fermentation to determine total gas production, pH, ammonianitrogen (NH3-N), and volatile fatty acids (VFA). Microbial populations were determined by quantitative real-time polymerase chain reaction (PCR). All data were analyzed as a 3×2 factorial arrangement design using the MIXED procedure of Statistical Analysis Systems. Results: Changes in the fermentation (pH, lactate, acetate, propionate, and NH3-N) and chemical composition (moisture, crude protein, crude fiber, and ash) were observed. For in vitro rumen fermentation, lower rumen pH, higher acetate, propionate, and total VFA content were observed in the F-TMR group after 24 h incubation (p<0.05). F-TMR group had higher acetate concentration compared with the non-fermented group. Total VFA was highest (p<0.05) in F-TMR containing combined forage of domestic and imported source (F-CF) and F-TMR containing Italian ryegrass silage and corn silage (F-IRS-CS) than that of TMR diet containing oat, timothy, and alfalfa hay. The microbial population was not affected by the different TMR diets. Conclusion: The use of Italian ryegrass silage and corn silage, as well as the inoculation of coculture of L. acidophilus and B. subtilis, in the TMR caused changes in the pH, lactate and acetate concentrations, and chemical composition of experimental diets. In addition, F-TMR composed with Italian ryegrass silage and corn silage altered ruminal pH and VFA concentrations during in vitro rumen fermentation experiment.

Effects of Amino Acids Fermentation By-product on Fermentation Quality and In situ Rumen Degradability of Italian Ryegrass (Lolium multiflorum) Silage

  • Yimiti, W.;Yahaya, M.S.;Hiraoka, H.;Yamamoto, Y.;Inui, K.;Takeda, M.;Tsukahara, A.;Goto, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.633-637
    • /
    • 2004
  • The experiment of silage for preservation of fresh Italian ryegrass (Lolium multiflorum) was carried out to examine whether the fermentation quality and microbial degradation in the rumen can be altered by the treatment of amino acids fermentation byproduct (AFB). The plant was ensiled for 40 days with 4 treatments of different ratios of AFB and sugarcane molasses (SCM) mixture. The treatment 2 (T2, AFB:SCM=100:0) and treatment 3 (T3, AFB:SCM=40:60) silages showed higher (p<0.05) concentrations of lactic acids, lower (p<0.05) pH and dry matter (DM) losses than the Control (T1, none additive) and treatment (T4, AFB:SCM=0:100) silages. The treatments 2 and 3 contained higher (p<0.05) DM and crude protein contents in silages compared to treatments 1 and 4 silages. The NDF, ADF and cellulose contents were also lower (p<0.05) in T2, T3 and T4 silages than T1 silage and fresh material before ensiled. The in situ rumen DM, NDF, ADF, hemicellulose and cellulose degradability was also higher (p<0.05) in T2, T3 and T4 silages than T1 silage, while the highest improvement was achieved with addition of AFB:SCM at level of 40:60 at ensiling. The result in this study indicates that the addition of AFB and SCM additives improved the silage fermentation and cell wall degradability of Italian ryegrass silage.

Effects of supplementation of hairy vetch on the quality of whole crop barley silage (헤어리베치의 첨가가 맥류 사일리지의 품질에 미치는 영향)

  • Jang, Won-Sup;Yang, Byung-Mo;Heo, Jung-Min;Lee, Hyung-Suk;Lee, Soo-Kee
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.383-388
    • /
    • 2015
  • This study was conducted to investigate the effects of hairy vetch supplementation on quality of winter crop silage. There were 4 treatments (addition levels of hairy vetch ; 0, 5, 15, and 30%) with 3 replicates. Experimental silages stored for 40 days at room temperature ($20-25^{\circ}C$). THe silage crude protein level was improved (P<0.05) while hairy vetch supplementation increased. However, no difference was found (P>0.05) in crude fat, NDF and ADF of the silage while hairy vetch supplementation increased. The silage pH was increased (P<0.05) but lactic acid level was decreased (P<0.05) while hairy vetch supplementation increased. Nonetheless, acetic and butyric acids concentrations were increased (P<0.05) while hairy vetch supplementation increased. Sucrose, glucose and fructose levels were increased (P<0.05) while hairy vetch supplementation increased. Although negative effects were detected in whole crop barley silage while hairy vetch supplementation increased, optimum level of hairy vetch supplementation could be overwhelmed its negative effects on whole crop barley silage. Thus, the results of present study suggested that 15% hairy vetch supplementation of whole crop barley silage would be beneficial its quality maintenance compared to whole crop barley silage per se.

Effect of Corn Silage and Soybean Silage Mixture on Rumen Fermentation Characteristics In Vitro, and Growth Performance and Meat Grade of Hanwoo Steers (옥수수 사일리지와 대두 사일리지의 혼합급여가 In Vitro 반추위 발효성상 및 거세한우의 성장과 육질등급에 미치는 영향)

  • Kang, Juhui;Lee, Kihwan;Marbun, Tabita Dameria;Song, Jaeyong;Kwon, Chan Ho;Yoon, Duhak;Seo, Jin-Dong;Jo, Young Min;Kim, Jin Yeoul;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.61-72
    • /
    • 2022
  • The present study was conducted to examine the effect of soybean silage as a crude protein supplement for corn silage in the diet of Hanwoo steers. The first experiment was conducted to evaluate the effect of replacing corn silage with soybean silage at different levels on rumen fermentation characteristics in vitro. Commercially-purchased corn silage was replaced with 0, 4, 8, or 12% of soybean silage. Half gram of the substrate was added to 50 mL of buffer and rumen fluid from Hanwoo cows, and then incubated at 39℃ for 0, 3, 6, 12, 24, and 48 h. At 24 h, the pH of the control (corn silage only) was lower (p<0.05) than that of soybean-supplemented silages, and the pH numerically increased along with increasing proportions of soybean silage. Other rumen parameters, including gas production, ammonia nitrogen, and total volatile fatty acids, were variable. However, they tended to increase with increasing proportions of soybean silage. In the second experiment, 60 Hanwoo steers were allocated to one of three dietary treatments, namely, CON (concentrate with Italian ryegrass), CS (concentrate with corn silage), CS4% (concentrate with corn silage and 4% of soybean silage). Animals were offered experimental diets for 110 days during the growing period and then finished with typified beef diets that were commercially available to evaluate the effect of soybean silage on animal performance and meat quality. With the soybean silage, the weight gain and feed efficiency of the animal were more significant than those of the other treatments during the growing period (p<0.05). However, the dietary treatments had little effect on meat quality except for meat color. In conclusion, corn silage mixed with soybean silage even at a lower level provided a greater ruminal environment and animal performances, particularly with increased carcass weight and feed efficiency during growing period.

Methane Emission, Nutrient Digestibility, Energy Metabolism and Blood Metabolites in Dairy Cows Fed Silages with and without Galacto-oligosaccharides Supplementation

  • Santoso, B.;Kume, S.;Nonaka, K.;Kimura, K.;Mizukoshi, H.;Gamo, Y.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.534-540
    • /
    • 2003
  • This study was conducted to investigate the effect of supplementation of galacto-oligosaccharides (GOS) on methane emission, nutrient digestibility, energy utilization and blood metabolites by Holstein cows fed silages. In two sequential digestion and respiratory trials, two non-lactating Holstein cows were arranged to a balanced incomplete block design. Experimental diets consisted of two silage types; orchardgrass (Dactylis glomerata L.) based silage (OS), mixed silage (orchardgrass based silage and alfalfa (Medicago sativa L.) silage) (MS), while two GOS levels were without supplementation (0) and 2% of dry matter intake supplementation (2). Four combination diets were OS-0, OS-2, MS-0 and MS-2. Significant effects of silage types and GOS supplementation levels were not observed for DM and OM intake. Whereas the digestibility of OM, NDF and ADF was significantly (p<0.05) higher in cows fed OS with and without GOS compared cows fed MS diets. As percentage of GE intake, fecal energy loss for OS diets was significantly (p<0.05) declined than for MS diets. In contrast, cows fed MS diets had lower (p<0.05) urine energy loss as a proportion of GE intake compared to OS diets. Energy loss as CH4 and heat production was numerically increased when cows fed both OS and MS with GOS supplementation. Compared to OS, CH4 emission in cows fed MS was numerically decreased by 10.8 %. Methane conversion ratio (energy loss as CH4 per unit of GE intake) for OS-0, OS-2, MS-0 and MS-2 were 7.1, 7.2, 6.8 and 7.0, respectively. Plasma of glucose and urea-N concentration were significantly (p<0.05) elevated from 1 h to 6 h after feeding, otherwise total protein in plasma was declined (p<0.01) at 6 after feeding.

Effects of Combined Treatment of Lactic Acid Bacteria and Cell Wall Degrading Enzymes on Fermentation and Composition of Rhodesgrass (Chloris gayana Kunth.) Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.522-529
    • /
    • 1998
  • This experiment was conducted to study the effects of lactic acid bacteria (LAB) inoculation either alone or in combination with cell wall degrading enzymes on the fermentation characteristics and chemical compositions of Rhodesgrass silage. Over to 1 kg of fresh Rhodesgrass sample a treatment of inoculant LAB with or without addition of an enzyme of Acremoniumcellulase (A) or Meicelase (M) or a mixture of both enzymes (AM) was applied. The treatments were control untreated, LAB-treated (application rate $1.0{\times}10^5cfu/g$ fresh sample), LAB+A 0.005%, LAB+A 0.01%, LAB+A 0.02%, LAB+M 0.005%, LAB+M 0.01%, LAB+M 0.02 %, LAB+AM 0.005%, LAB+AM 0.01%, and LAB+AM 0.02%. The sample was ensiled into 2-L vinyl bottle silo, with 9 silages of each treatment were made. Three silages of each treatment were incubated at 20, 30 and $40^{\circ}C$ for 2-months of storage period. All silages were well preserved with their fermentation quality has low pH values (3.91-4.26) and high lactic acid concentrations (4.11-9.89 %DM). No differences were found in fermentation quality and chemical composition of the control untreated silage as compared to the LAB-treated silage. Combined treatment of LAB+cellulases improved the fermentation quality of silages measured in terms of lower (p < 0.01) pH values and higher (p < 0.05) lactic concentrations than those of LAB-treated silages. Increasing amount of cellulase addition resulted in decrease (p < 0.05) of pH value and increase (p < 0.05) of lactic acid concentration. LAB + cellulase treatments (all cellulase types) reduced (p < 0.01) NDF, ADF and in vitro dry matter digestibility of silages compared with the control untreated silages. The fermentation quality and the rate of cell wall reduction were higher (p < 0.01) in the silages treated with LAB + cellulase A than in the silages treated with either LAB+cellulase M or LAB + cellulase AM. Incubation temperature of $40^{\circ}C$ was likely to be more appropriate environment for stimulating the fermentation of Rhodesgrass silages than those of 20 and $30^{\circ}C$.

Fermentative Quality of Guineagrass Silage by Using Fermented Juice of the Epiphytic Lactic Acid Bacteria (FJLB) as a Silage Additive

  • Bureenok, S.;Namihira, T.;Tamaki, M.;Mizumachi, S.;Kawamoto, Y.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.807-811
    • /
    • 2005
  • This experiment examined the characteristics of fermented juice of epiphytic lactic acid bacteria (FJLB) prepared by the addition of glucose, sucrose and molasses as a fermentation substrate. The effect of FJLB on the fermentative quality and changes in chemical composition during fermentation of guineagrass silage were also investigated. The pH value of the silages treated with FJLB rapidly decreased, and reached to the lowest value within 7 days of start of fermentation, as compared to the control. The number of lactic acid bacteria (LAB) in the treated silages increased for the first 3 days, thereafter the number of LAB declined gradually up to the end of the experiment. Silages treated with FJLB had larger populations of LAB than the control. Ammonia-nitrogen production increased throughout the ensiling period, which in the control and no-sugar added FJLB silages were higher than the other treated silages. Lactic acid levels varied with the time of ensiling and among the silage treatments. For any sugar FJLB treated silages, the lactic acid increased initially, and then slightly reduced to less than 50 g/kg of dry matter until 49 days after ensiling, except the silage treated with glucose added FJLB. Nevertheless, lactic acid content of the control decreased constantly from the beginning of ensiling and was not found after 35 days. Moreover, acetic acid content increased throughout the ensiling period. All the FJLB treated silages had significantly (p<0.05) lower pH and ammonia-nitrogen content, while significantly (p<0.05) higher lactic acid content and V-score value compared with the control. This study confirmed that the applying of FJLB with any sugar substrate improved fermentative quality of silage.

The Effects of Additives in Napier Grass Silages on Chemical Composition, Feed Intake, Nutrient Digestibility and Rumen Fermentation

  • Bureenok, Smerjai;Yuangklang, Chalermpon;Vasupen, Kraisit;Schonewille, J. Thomas;Kawamoto, Yasuhiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1248-1254
    • /
    • 2012
  • The effect of silage additives on ensiling characteristics and nutritive value of Napier grass (Pennisetum purpureum) silages was studied. Napier grass silages were made with no additive, fermented juice of epiphytic lactic acid bacteria (FJLB), molasses or cassava meal. The ensiling characteristics were determined by ensiling Napier grass silages in airtight plastic pouches for 2, 4, 7, 14, 21 and 45 d. The effect of Napier grass silages treated with these additives on voluntary feed intake, digestibility, rumen fermentation and microbial rumen fermentation was determined in 4 fistulated cows using $4{\times}4$ Latin square design. The pH value of the treated silages rapidly decreased, and reached to the lowest value within 7 d of the start of fermentation, as compared to the control. Lactic acid content of silages treated with FJLB was stable at 14 d of fermentation and constant until 45 d of ensiling. At 45 d of ensiling, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of silage treated with cassava meal were significantly lower (p<0.05) than the others. In the feeding trial, the intake of silage increased (p<0.05) in the cow fed with the treated silage. Among the treatments, dry matter intake was the lowest in the silage treated with cassava meal. The organic matter, crude protein and NDF digestibility of the silage treated with molasses was higher than the silage without additive and the silage treated with FJLB. The rumen parameters: ruminal pH, ammonia-nitrogen ($NH_3$-N), volatile fatty acid (VFA), blood urea nitrogen (BUN) and bacterial populations were not significantly different among the treatments. In conclusion, these studies confirmed that the applying of molasses improved fermentative quality, feed intake and digestibility of Napier grass.

Effects of Homolactic Bacterial Inoculant Alone or Combined with an Anionic Surfactant on Fermentation, Aerobic Stability and In situ Ruminal Degradability of Barley Silage

  • Baah, J.;Addah, W.;Okine, E.K.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.369-378
    • /
    • 2011
  • The effect of a homolactic inoculant containing a blend of Lactobacillus plantarum, Pediococcus acidilactici and Enterococcus faecium or, the anionic surfactant, sodium dodecyl sulphate (SDS), alone or in combination on fermentation characteristics, aerobic stability and in situ DM, OM and NDF degradability of barley silage was investigated. Barley (Hordeum vulgare, L.) was harvested (45% DM), chopped and treated with water at 24 ml/kg forage (Control), inoculant at $1.09{\times}10^5$ cfu/g forage (I), SDS at 0.125% (wt/wt) of forage (S) or with the inoculant ($1.09{\times}10^5$ cfu/g) plus SDS (0.125% wt/wt; I+S). The treated forages were ensiled in triplicate mini silos and opened for chemical and microbiological analyses on d 1, 2, 3, 7, 14, 42 and 77. Silage samples from d 77 were opened and aerobically exposed for 7 d. The in situ rumen degradability characteristics of silage DM, OM and NDF were also determined. The terminal concentration of NDF in S and I+S was lower (p<0.001) than in other treatments. Lactate concentration was higher (p<0.001) and the rate and extent of pH decline were greater (p<0.001) in I and I+S than S and Control silages. A homolactic pathway of fermentation in I and I+S was evidenced by reduced (p<0.001) water-soluble carbohydrates concentration, higher lactate (p<0.01), lower acetate (p<0.01) and lower pH values (p<0.001) than in S and Control silages. All silages remained stable over 7 d of exposure to air as indicated by lower temperatures and moulds, and by non-detectable yeast populations. The treated silages had lower DM and OM degradability than in the Control but NDF degradation characteristics of I+S were improved compared to other treatments. It is concluded that the inoculant alone improved the fermentation characteristics whereas the combination of the inoculant with SDS improved both fermentation and NDF degradability of barley silage.