• Title/Summary/Keyword: pH of silage

Search Result 399, Processing Time 0.031 seconds

Effects of Non-ionic Surfactant Supplementation on Ruminal Fermentation, Nutrient Digestibility and Performance of Beef Steers Fed High-roughage Diets

  • Ahn, Gyu-chul;Kim, Jeong-hoon;Park, Eun-kyu;Oh, Young-Kyoon;Lee, Gang-yeon;Lee, Jung-il;Kim, Chong-min;Park, Keun-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.993-1004
    • /
    • 2009
  • Three experiments were conducted to determine the effects of non-ionic surfactant (NIS) supplementation on ruminal fermentation, nutrient digestibility and performance of beef steers fed high-roughage diets. The objective of experiment 1 was to investigate the effects of NIS supplementation on in vitro ruminal fermentation of cultures administered with corn and barley as grain substrate and rice straw and timothy hay as roughage substrate. The in vivo ruminal fermentation, nitrogen balance and digestibility of nutrients were also examined with steers fed a high-roughage diet in experiment 2. The aim of experiment 3 was to determine the responses to NIS of growing steers fed a high-roughage diet. In experiment 1, ammonia nitrogen concentration for NIS supplementation was higher (p<0.05) than for the control with all substrates. However, concentrations of total volatile fatty acid (VFA), acetate, butyrate and valerate of the incubated roughage substrates, rice straw and timothy hay, were higher (p<0.05) for NIS supplementation than for the control whereas VFA concentrations in the cultures of corn and barley were unaffected. These results indicated that effects of NIS on ruminal fermentation are diet dependent, specifically on roughage sources. In experiment 2, ruminal pH of steers supplemented with NIS was lower (p<0.05) than the control. Ruminal concentrations of ammonia nitrogen, acetate, total VFA and urinary concentrations of purine derivatives were increased (p<0.05) by NIS supplementation. In experiment 3, supplementation of NIS increased (p<0.05) intakes of total feed and corn silage, average daily gain, and feed efficiency of growing steers although they varied depending on supplementation level. Due to the roughage-specific feature of NIS effects, NIS appears to enhance ruminal fermentation of fibrous parts of feeds and, consequently, performance of steers fed a high-roughage diet.

Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls

  • Xia, Chuanqi;Rahman, Muhammad Aziz Ur;Yang, He;Shao, Taoqi;Qiu, Qinghua;Su, Huawei;Cao, Binghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1643-1653
    • /
    • 2018
  • Objective: This study investigated the effect of dietary crude protein (CP) supplementation on nutrient intake, nitrogen (N) utilisation, blood metabolites, ruminal fermentation and growth performance of young Holstein bulls. Methods: Twenty-one young bulls weighing $277{\pm}11.2kg$ were equally divided into three groups and were offered diets formulated with low CP (LCP; 10.21% CP and 4.22% rumen degradable protein [RDP]), medium CP (MCP; 12.35% CP and 5.17% RDP) and high CP (HCP; 14.24% CP and 6.03% RDP). Yellow corn silage was used as a unique forage source and was mixed with concentrate. This mixed feed was given ad libitum to the young bulls included in the study. Results: Results showed that CP intake, blood urea nitrogen, N intake, total N excretion and N balance increased linearly with an increase in dietary CP level (p<0.05). However, no significant difference was observed in nutrient digestibility among the bulls receiving the different diets. Ruminal pH (p<0.05) and ammonia nitrogen ($NH_3-N$) concentration (p<0.01) were significantly higher in the bulls receiving the MCP and HCP diets than in those receiving the LCP diet. The bulls receiving the HCP diet showed significantly higher ruminal bacterial protein level, propionate, acetate and total volatile fatty acid (TVFA) concentrations than bulls receiving the LCP diet (p<0.05). Moreover, dietary CP level exerted a significant positive effect on the final body weight, average daily gain and gain-to-feed ratio of the bulls (p<0.05). Conclusion: High dietary CP level is optimal for achieving maximum growth and high profitability without exerting a negative effect on the physiology of growing Holstein bulls.

Effects of Animal Manure Application on Crops Yield and Reducing the Application Rate of Fertilizer (가축분 시용량에 따른 작물의 수량반응과 시비량 절감효과)

  • Ryu, In-Soo;Lim, Sun-Joon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.232-238
    • /
    • 1999
  • Effects of animal manure application on the yield of crops were studied. Red pepper (1995) and Chinese cabbage (1996) were planted in pot with chicken, cow and pig manure application at $1.6mg\;ha^{-1}$, $3.2mg\;ha^{-1}$. Silage corn was grown in pot at 100%, 75%, 50% and 0%of recommended chemical fertilization rate among previously manure applied soils to predict the reduction of fertilizer. Results were as follows: Chemical properties of manure applied soils for two years were increased as pH 6.1~7.1, OM $17.1{\sim}23.7g\;kg^{-1}$, $P_2O_5$ $370{\sim}1.058mg\;kg^{-1}$, while those of chemical fertilizer applied soils were pH 5.8. OM $16.9g\;kg^{-1}$, $P_2O_5$ $249mg\;kg^{-1}$. Exchangeable cation and $P_2O_5$ content were increased in chicken manure applied soils than those in manure applied soils. Red pepper yield in manure applied pots was 121~192% compared to that in only chemical fertilizer applied pot. Effects of manure application was in the order of pig, chicken and cow manure. Chinese cabbage yield in manure applied pots was 55%~111% compared to that in chemical fertilizer applied pot. Effects of manure application were higher in red pepper than in Chinese cabbage. Fresh corn yield showed no significance between reducing 0% and 25% of recommend fertilization rate in previously manure applied plots, except in previously cow manure applied plots at $1.6mg\;ha^{-1}$. Fresh corn yield showed a positive correlation ($r=0.75^{**}$) with organic matter content and showed a positive correlation ($r=0.85^{**}$) with total nitrogen in untreated plot among previously manure applied soils.

  • PDF

Comparison of In vivo and In vitro Techniques for Methane Production from Ruminant Diets

  • Bhatta, Raghavendra;Tajima, K.;Takusari, N.;Higuchi, K.;Enishi, O.;Kurihara, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1049-1056
    • /
    • 2007
  • This study was conducted to compare the methane ($CH_4$) production estimated by in vivo (sulfur hexafluoride tracer technique ($SF_6$)) with that of two in vitro rumen simulation (RUSITEC) and gas production (IVGPT)) techniques. Four adult dry Holstein cows, aged $7.4{\pm}3.0$ years and weighing $697{\pm}70$ kg, were used for measuring methane production from five diets by the $SF_6$ technique. The experimental diets were alfalfa hay ($D_1$), corn silage + soybean meal (SBM) (910: 90, $D_2$), Italian rye grass hay +SBM (920: 80, $D_3$), rice straw +SBM (910: 90, $D_4$) and Sudan grass hay +SBM (920: 80, $D_5$). Each diet was individually fed to all 4 cows and 5 feeding studies of 17 d each were conducted to measure the methane production. In the RUSITEC, methane production was measured from triplicate vessels for each diet .In vitro gas production was measured for each of the diets in triplicate syringes. The gas produced after 24 and 48 h was recorded and gas samples were collected in vacuum vials and the methane production was calculated after correction for standard temperature and pressure (STP). Compared to the $SF_6$ technique, estimates of methane production using the RUSITEC were lower for all diets. Methane production estimated from 24 h in vitro gas production was higher (p<0.001) on $D_1$ as compared to that measured by $SF_6$, whereas on $D_2$ to $D_5$ it was lower. Compared to $SF_6$, methane production estimated from 48 h in vitro gas production was higher on all diets. However, methane estimated from the mean of the two measurement intervals (24+48 h/2) in IVGPT was very close to that of $SF_6$ (correlation 0.98), except on $D_1$. The results of our study confirmed that IVGPT is reflective of in vivo conditions, so that it could be used to generate a database on methane production potential of various ruminant diets and to examine strategies to modify methane emissions by ruminants.

Chemical Composition and Fermentation Characteristics of Storage Sections of the Round Bale Silage of Fresh Rice Straw at Yonchon of Gyeonggi-do (연천지역에 있어서 생볏짚 원형곤포사일리지의 부위별 사료성분 및 발효품질)

  • Kim, Sang-Rok;Kim, Gon-Sik;Woo, Jae-Hoon;Lee, Jun-Woo;Sung, Kyung-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2004
  • The purpose of this study is to discuss the ways to evaluate the effectiveness of storage sections of the round bale silage of fresh rice straw (RS). This study evaluated, the changes of the fermentation characteristics and chemical composition of the different sectors of the RS after a certain period; a month later after the bailing, samples of three different RS (bale one, bale two, and bale three) were taken according to the three different sectors (top, center, and the bottom) of the bale. According to the findings of this study there was no significant difference in the RS's chemical composition content among the different sectors (top, center, or the bottom) of the bale. The possible reason for this is believed that on the basis of different sectors of the bale, the moisture (the water soluble nutrient) movement didn't occur and was locked in and couldn't escape, because the dry matter content of the rice straw was as high as $70\%$. After immediately harvesting the paddies, using the fresh rice straw to produce RS at the same time when the dry matter content is in between $26{\sim}40\%$, the chemical composition was found to be of a good quality. Accordingly, it is recommended that when the dry matter content is in between $35{\sim}45\%$, in order to produce RS with the fine chemical composition of 'Yonchon' region, bailing should be done simultaneously with the harvesting of paddies, before the first frost appears.

Evaluation of the quality of Italian Ryegrass Silages by Near Infrared Spectroscopy (근적외선 분광법을 이용한 이탈리안 라이그라스 사일리지의 품질 평가)

  • Park, Hyung-Soo;Lee, Sang-Hoon;Choi, Ki-Choon;Lim, Young-Chul;Kim, Jong-Gun;Jo, Kyu-Chea;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.301-308
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. This study was carried out to explore the accuracy of near infrared spectroscopy (NIRS) for the prediction of chemical parameters of Italian ryegrass silages. A population of 267 Italian ryegrass silages representing a wide range in chemical parameters and fermentative characteristics was used in this investigation. Samples of silage were scanned at 2 nm intervals over the wavelength range 680~2,500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of the highest coefficients of determination in cross validation ($R^2$) and the lowest standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The $R^2$ and SECV were 0.98 (SECV 1.27%) for moisture, 0.88 (SECV 1.26%) for ADF, 0.84 (SECV 2.0%), 0.93 (SECV 0.96%) for CP and 0.78 (SECV 0.56), 0.81 (SECV 0.31%), 0.88 (SECV 1.26%) and 0.82 (SECV 4.46) for pH, lactic acid, TDN and RFV on a dry matter (%), respectively. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation quality of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

Diurnal Variations in Milk and Blood Urea Nitrogen and Whole Blood Ammonia Nitrogen in Dairy Cows

  • Hwang, Sen-Yuan;Lee, Mei-Ju;Peh, Huo-Cheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1683-1689
    • /
    • 2001
  • The levels of urea nitrogen both in blood (BUN) and milk (MUN), and milk protein (MP) reflect protein and energy intake in dairy herd feeding. Blood and milk constituents may be changes rhythmically and influence by different sampling time within a day and after feeding. Trials were conducted using five dietary treatments in both lactating and dry cows to study the effects of sampling time on concentrations of BUN, MUN and whole blood ammonia nitrogen (BAN) in practical dairy cow feeding in Taiwan. The conventional feed ingredients and forages including corn silage, alfalfa hay, timothy or pangola hay and corn grain were used as major source of the diet to follow practical dairy cow feeding. Five different diets were varying in amounts (low=L; standard=S; high=H) of crude protein (P) and energy (E) according to the NRC (1989). The energy to protein ratios in kcal/kg for the PSES, PLES, PHES, PSEH and PSEL were 10.82, 12.54, 9.41, 12.53 and 9.13 in lactating cows, and 11.38, 13.33, 9.78, 13.28 and 9.74 in dry cows, respectively. Results showed that after feeding at 9:30, BUN reached peak at 13:30 and was significantly higher than those to that sampled at 14:30 to 18:30 (p<0.05) in dry cows. Therefore the best blood sampling time for urea nitrogen assay in dry cows is 4 hours after morning feeding. In lactating cows, BUN of 13:30 was significantly higher than those of 8:30 to 11:30 (p<0.05), but there were no significant difference between the BUN values of other sampling time. Hence the suitable blood sampling time for BUN value in lactating cows was located on 3 to 8 hours after morning feeding, but the best time was 4 hours after morning feeding. MUN content is significantly higher in the afternoon collected bulk milk than the fore-strip morning milk (p<0.05), therefore the best sampling time for MUN is from afternoon collected bulk milk. Diurnal BAN changed without traceable rhythmic pattern and was negatively correlated to the BUN (r = -0.78). It is suggested that BAN may not be a good indicator for monitoring dairy cow feeding.

Yield and Quality of Forage Mixture as Affected by Maturity of Rye Cultivar and Oat-Rye Seeding Rate (호밀품종의 조만성과 연맥-호밀의 파종량이 혼파사초의 수량과 사료가치에 미치는 영향)

  • Ko, H.J.;Park, H.S.;Kim, S.G.;Kim, D.A.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.239-250
    • /
    • 2002
  • Evaluation works of oat in mixture with rye on forage yield have not been reported. The objective of this study was to determine yield and quality of forage mixture as affected by maturity of rye cultivar and oat-rye seeding rate at Suweon from 1999 to 2000. The experiment was arranged in a split plot design with three replications. Main plots consisted of maturity of rye. such as early(cv. Koolgrazer) and late(cv. Kodiak)maturing cultivars. Sub-plots consisted of seeding rate (T1: Oat 2000 and rye 0kg/ha, Ts: Oat 150 and rye 40kg/ha, T3: Oat100 and rye 80kg/ha, T4: Oat50 and rye 120kg/ha. and T5: Oat0 and rye 160kg/ha). Crude protein(CP) content of oat-rye mixture harvested in the fall was not influenced by maturity of rye cultivar, but that of oat-rye mixture was increased from 13.6 to 19.3% as the seeding rate of rye increased(P<0.05), however, maturity of rye cultivar significantly affected CP content of oat-rye mixture in the spring(P<0.01). Acid detergent fiber(ADF) content of oat-rye mixture harvested in the spring was not significantly affected by rye cultivar, but the ADF was decreased from 27.8 to 20.7% as the seeding rate of rye increased(P$<$0.01). When rye was harveste in the spring, ADF content of late maturing cultivar 'Kodiak' was shown as 28.0%. This was lower than that of early maturing cultivar 'Koolgrazer' which was shown as 35.8%(P$<$0.01). Among treatments, neutral detergent fiber(NDF) and in vitro dry matter digestibility(IVDMD) of oat-rye mixture showed a similar trend made on ADF. In this experiment, the highest forage yield (12.356kg/ha) was obtained from early maturing rye cultivar and seeding rates of 100kg/ha of oat and 80kg/ha of rye mixture. A significant interaction between maturity of rye cultivar and seeding rate was found(P$<$0.01). The above results indicate that an early maturing rye cultivar at the seeding rate of 100kd/ha in mixtures with 80kg/ha of oat could be recommended as a succeeding cropping system after corn for silage.

Effects of Partial Replacement of Corn Grain and Soybean Meal with Agricultural By-Product Feeds on In Vitro Rumen Fermentation Characteristics and Optimum Levels of Mixing Ratio (농산부산물을 이용한 In Vitro 반추위발효 특성 및 적정 배합수준을 통한 옥수수 및 대두박 대체 효과)

  • Park, Joong-Kook;Lim, Dong-Hyun;Kim, Sang-Bum;Ki, Kwang-Seok;Lee, Hyun-June;Kwon, Eung-Gi;Cho, Won-Mo;Kim, Chang-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.441-450
    • /
    • 2011
  • This study was conducted to determine the effects of partial replacement of corn grain and soybean meal with agricultural by-product feeds on in vitro rumen fermentation characteristics and optimum levels of mixing ratio. The agricultural by-products to examine the effectiveness of the partial replacement of concentrate were wheat bran, corn gluten feed, bakery waste, soybean curd, rice bran, green kernel rice, soybean hull, distillers' grain, and mushroom substrate. In the first experiment, in vitro ruminal fermentation characteristics of feedstuffs were evaluated at 0, 3, 6, 12, 24, and 48 hours after incubation. In the second experiment, fermentation characteristics were investigated with green kernel rice and soybean curd which replaced corn grain or soybean meal. Feed were formulated with 40% corn grain + 20% soybean meal (T1), 40% corn grain + 17.5% soybean meal + 2.5% soybean curd (T2), 25% corn grain + 20% soybean meal + 15% green kernel rice (T3), and 30% corn grain + 15% soybean meal + 6% green kernel rice + 9% soybean curd (T4), respectively, with forage source of 10% alfalfa hay, 20% timothy hay, and 10% corn silage as fed-basis. In 24 and 48 hour cultivations, T4 showed significantly lower pH compared to T1, whereas in 3 and 24 hour cultivations, T4 showed significantly higher DM degradation compared to T1. In addition, the gas production of T3 was also higher than T1 (p<0.05). Overall results of the present experiments indicated that green kernel rice and soybean curd as agricultural by-products have the possibility of partial replacements of corn grain and soybean meal.

Near Infrared Spectroscopy for Measuring Purine Derivatives in Urine and Estimation of Microbial Protein Synthesis in the Rumen for Sheep

  • Atanassova, Stefka;Iancheva, Nana;Tsenkova, Roumiana
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1273-1273
    • /
    • 2001
  • The efficiency of the luminal fermentation process influences overall efficiency of luminal production, animal health and reproduction. Ruminant production systems have a significant impact on the global environment, as well. Animal wastes contribute to pollution of the environment as ammonia volatilized to the air and nitrate leached to ground water. Microbial protein synthesis in the rumen satisfies a large proportion of the protein requirements of animals. Quantifying the microbial synthesis is possible by using markers for lumen bacteria and protozoa such as nucleic acids, purine bases, some specific amino acids, or by isotopic $^{15}N,^{32}P,\;and\;^{35}S$ labelled feeds. All those methods require cannulated animals, they are time-consuming and some methods are very expensive as well. Many attempts have been made to find an alternative method for indirect measurement of microbial synthesis in intact animals. The present investigations aimed to assess possibilities of NIRS for prediction of purine nitrogen excretion and ruminal microbial nitrogen synthesis by NIR spectra of urine. Urine samples were collected from 12 growing sheep,6 of them male, and 6- female. The sheep were included in feeding experiment. The ration consisted of sorghum silage and protein supplements -70:30 on dry matter basis. The protein supplements were chosen to differ in protein degradability. The urine samples were collected daily in a vessel containing $60m{\ell}$ 10% sulphuric acid to reduce pH below 3 and diluted with tap water to 4 liters. Samples were stored in plastic bottles and frozen at $-20^{\circ}C$ until chemical and NIRS analysis. The urine samples were analyzed for purine derivates - allantoin, uric acid, xantine and hypoxantine content. Microbial nitrogen synthesis in the lumen was calculated according to Chen and Gomes, 1995. Transmittance urine spectra with sample thickness 1mm were obtained by NIR System 6500 spectrophotometer in the spectral range 1100-2500nm. The calibration was performed using ISI software and PLS regression, respectively. The following statistical results of NIRS calibration for prediction of purine derivatives and microbial protein synthesis were obtained.(Table Omitted). The result of estimation of purine nitrogen excretion and microbial protein synthesis by NIR spectra of urine showed accuracy, adequate for rapid evaluation of microbial protein synthesis for a large number of animals and different diets. The results indicate that the advantages of the NIRS technology can be extended into animal physiological studies. The fast and low cost NIRS analyses could be used with no significant loss of accuracy when microbial protein synthesis in the lumen and the microbial protein flow in the duodenum are to be assessed by NIRS.

  • PDF