• Title/Summary/Keyword: pH of adhesives

Search Result 62, Processing Time 0.028 seconds

Carrageenan-Based Liquid Bioadhesives for Paper and Their Physical Properties (카라기난 기반 액상형 바이오 종이 접착제의 제조 및 물성에 관한 연구)

  • Oh, Seung-Jun;Han, Won-Sik;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • There is a growing demand for natural materials to replace adhesives based on volatile organic compounds (VOCs). However, the exclusion of VOCs from the manufacturing process leads to difficulties in manufacturing, and reduction in productivity and preservability. In this paper, we report the manufacture of natural bioadhesives using the carrageenan component of seaweed. λ-carrageenan, isolated from the extracted total carrageenan, was used to prepare a highly stable adhesive for paper. The resulting composition was 52.0 ± 1.0% λ-carrageenan, 30.5 ± 0.5% Polyvinylpyrrolidone, 1.0 ± 0.05% ethylhexylglycerin, 1.5 ± 0.05% glycerin, 13.5 ± 0.5% dextrine, and 0.6 ± 0.05% food-grade antifoam emulsion. The viscosity was found to be 1.13 ± 0.07 × 105 cP (25℃), UV degradation occurred at pH6.22, drying rate was 15min, △b* was -10.79, and △E* ab was 8.18. The bioadhesive showed an excellent adhesion strength of 44.63 kgf/cm2. Thus this adhesive showed excellent fungal resistance and good adhesive persistence, without the presence of total volatile organic compounds (TVOC), formaldehyde (HCHO), and heavy metals.

In-vitro performance and fracture strength of thin monolithic zirconia crowns

  • Weigl, Paul;Sander, Anna;Wu, Yanyun;Felber, Roland;Lauer, Hans-Christoph;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.79-84
    • /
    • 2018
  • PURPOSE. All-ceramic restorations required extensive tooth preparation. The purpose of this in vitro study was to investigate a minimally invasive preparation and thickness of monolithic zirconia crowns, which would provide sufficient mechanical endurance and strength. MATERIALS AND METHODS. Crowns with thickness of 0.2 mm (group 0.2, n=32) or of 0.5 mm (group 0.5, n=32) were milled from zirconia and fixed with resin-based adhesives (groups 0.2A, 0.5A) or zinc phosphate cements (groups 0.2C, 0.5C). Half of the samples in each subgroup (n=8) underwent thermal cycling and mechanical loading (TCML)(TC: $5^{\circ}C$ and $55^{\circ}C$, $2{\times}3,000cycles$, 2 min/cycle; ML: 50 N, $1.2{\times}10^6cycles$), while the other samples were stored in water ($37^{\circ}C/24h$). Survival rates were compared (Kaplan-Maier). The specimens surviving TCML were loaded to fracture and the maximal fracture force was determined (ANOVA; Bonferroni; ${\alpha}=.05$). The fracture mode was analyzed. RESULTS. In both 0.5 groups, all crowns survived TCML, and the comparison of fracture strength among crowns with and without TCML showed no significant difference (P=.628). Four crowns in group 0.2A and all of the crowns in group 0.2C failed during TCML. The fracture strength after 24 hours of the cemented 0.2 mm-thick crowns was significantly lower than that of adhesive bonded crowns. All cemented crowns provided fracture in the crown, while about 80% of the adhesively bonded crowns fractured through crown and die. CONCLUSION. 0.5 mm thick monolithic crowns possessed sufficient strength to endure physiologic performance, regardless of the type of cementation. Fracture strength of the 0.2 mm cemented crowns was too low for clinical application.

Tooth surface treatment strategies for adhesive cementation

  • Rohr, Nadja;Fischer, Jens
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.85-92
    • /
    • 2017
  • PURPOSE. The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS. Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS. The highest bond strength values for all cements were achieved with etching and primer on enamel ($25.6{\pm}5.3-32.3{\pm}10.4MPa$). On dentin, etching and priming produced the highest bond strength values for all cements ($8.6{\pm}2.9-11.7{\pm}3.5MPa$) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only ($15.3{\pm}4.1MPa$). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION. The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied.

The effect of a desensitizer and $CO_2$ laser irradiation on bond performance between eroded dentin and resin composite

  • Ding, Meng;Shin, Sang-Wan;Kim, Min-Soo;Ryu, Jae-Jun;Lee, Jeong-Yol
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.165-170
    • /
    • 2014
  • PURPOSE. This study was aimed to evaluate effect of the desensitizing pretreatments on the micro-tensile bond strengths (${\mu}TBS$) to eroded dentin and sound dentin. MATERIALS AND METHODS. Forty-two extracted molars were prepared to form a flat dentin surface, and then they were divided into two groups. Group I was stored in distilled water while group II was subjected to a pH cycling. Each group was then subdivided into three subgroups according to desensitizing pretreatment used: a) pretreatment with desensitizer (Gluma); b) pretreatment with $CO_2$ Laser (Ultra Dream Pluse); c) without any pretreatment. All prepared surfaces were bonded with Single Bond 2 and built up with resin composite (Filtek Z250). The micro-tensile bond test was performed. Fracture modes were evaluated by stereomicroscopy. Pretreated surfaces and bonded interfaces were characterized by scanning electron microscope (SEM). The data obtained was analyzed by two-way ANOVA (${\alpha}$=0.05). RESULTS. For both sound and eroded dentin, samples treated with desensitizer showed the greatest ${\mu}TBS$, followed by samples without any treatment. And samples treated with $CO_2$ laser showed the lowest ${\mu}TBS$. SEM study indicated that teeth with eroded dentin appeared prone to debonding, as demonstrated by existence of large gaps between adhesive layers and dentin. CONCLUSION. Pretreatment with Gluma increased the ${\mu}TBS$ of Single Bond 2 for eroded and sound teeth. $CO_2$ laser irradiation weakened bond performance for sound teeth but had no effect on eroded teeth.

Development in Planting Porous Block for Revegetation (녹화용 다공질 식재 블럭의 개발)

  • Ahn, Young-Hee;Choi, Kyoung-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is carried out to make the environmentally affinitive porous planting block for revegetation and to make a effective program for greening plans. The summary is shown below. 1. In order to get stronger intensity and distribute proper porosity in the block for planting, the cements mixed with fine soil were used and the finer in soil grains gives the stronger in intensity of the cements. Use of the furnace slag cements instead of the portland cements showed relatively stronger in intensity of the block. The intensity of the block became stronger when the mixed ratio of the cements to soil is 5 : 1, but the pore space ratio was lower. The percolate pH of the portland cements after one month of treatment was 13.1 but the percolate pH of the furnace slag cements was shown lower. To mold proper porous planting blocks, the proper combination of additives such as the dehydrating agent, elastic agent and adhesives into the mixture of cements and soil gives better effectives. 2. After molding the porous planting blocks, it gave a better result when the grains of the filler made of peat moss, upland soil and compound fertilizer were smaller than 2 mm in size. Shaking of the filling materials also gave the better result, but it took more time and cost much more. Therefore, it was better when the filling materials were mixed with water first then flew down for stuffing. 3. It was necessary to cover with soil after seeding or planting on the porous planting blocks. The proper thickness of the soil to help root development and keep moisture is about 3~5 cm. 4. The plants for planting on the porous planting block were required stronger in the growth condition of their roots and their environmental adaptability. The average germination percentage and rate of Platycodon grandiflorum on the porous planting block were 88.8% and 85% accordingly and their rate is very uniform. The germination rates of Dianthus superbus var. longicalycinus and Taraxacum officinale were more than 50%. These grass species, Chelidonium majus var. asiaticum, Lysimachia mauritiana and Scabiosa mansenensis were the suggested biennial grasses in the planting area where exchanging of the seedling or nursery plants was not necessary because their germination rates were 59.3, 45.6 and 40.3% accordingly. Viola kapsanensis, Chrysanthemum sp., Taraxacum sp. and Iris ensata var. spontanea are the grass species that could be used by seeding for greening. However, the germination rate of Solidago virga-aurea var. asiatica, Aster scaber and Lythrum anceps were lower than 10%. The coverage ratio of Ixeris stolonifera is more than 80% after 60 days seeding and the root length of most of species are more than 10 cm except Iris ensata var. spontanea and Platycodon grandiflorum because their root developed thicker than other species.

Utilization of Kraft Black Liquor as Resin Binders (접착제(接着劑)로서 크라프트 리그닌 폐액(廢液)의 이용(利用))

  • Park, Kwang-Man;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • A kraft black liquor obtained from pulping of pine (Pinus densiflora Sieb et Zucc) was used for producing three kinds of adhesive such as black liquor-phenol formaldehyde resin, methyloeated kraft lignin-phenol formaldehyde resin, and lignin cake-phenol resin. In case of producing black liquor-phenol formaldehyde resin, about 60 percent of the phenolic resin could be replaced by black liquor. Also the optimal press condition appeared to be $160^{\circ}C$ for 7 min. (l5.77Kg/$cm^2$ in dry test, 8.54Kg/$cm^2$ in 4 hr. boil test). Phenol could be substituted up to 80-90 percent by methylolated kraft lignin. The suitable conditions of factors affecting bond quality were pH to 2.6, methanol as solvent and 0.2ml formaldehyde per 1g of the adhesives, respectively. The optimal press condition was $150^{\circ}C$ for 4 min. (188.54Kg/$cm^2$ in dry test, 10.08Kg/$cm^2$ in 4 hr. boil test). In preparing lignin cake-phenol resin, a suitable mixing ratio of phenol to powered kraft lignin was one to one by weight. The optimal press condition was $150^{\circ}C$ for 4 min.(18.46Kg/$cm^2$ in dry test, 12.31Kg/$cm^2$ in 4 hr. hoil test).

  • PDF

THE EFFECT OF THE REMOVAL OF CHONDROITIN SULFATE ON BOND STRENGTH OF DENTIN ADHESIVES AND COLLAGEN ARCHITECTURE (비교원성 단백질이 상아질 접착제의 결합강도와 교원질의 형태에 미치는 영향)

  • Kim, Jong-Ryul;Park, Sang-Jin;Choi, Gi-Woon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.211-221
    • /
    • 2010
  • Proteoglycan is highly hydrophilic and negatively charged which enable them attract the water. The objective of study was to investigate the effects of Proteoglycan on microtensile bond strength of dentin adhesives and on architecture of dentin collagen matrix of acid etched dentin by removing the chondroitin sulphate attached on Proteoglycan. A flat dentin surface in mid-coronal portion of tooth was prepared. After acid etching, half of the specimens were immersed in 0.1 U/mL chondroitinase ABC (C-ABC) for 48 h at $37^{\circ}C$, while the other half were stored in distilled water. Specimens were bonded with the dentin adhesive using three different bonding techniques (wet, dry and re-wet) followed by microtensile bond strength test. SEM examination was done with debonded specimen, resin-dentin interface and acid-etched dentin surface with/without C-ABC treatment. For the subgroups using wet-bonding or dry-bonding technique, microtensile bond strength showed no significant difference after C-ABC treatment (p > 0.05). Nevertheless, the subgroup using rewetting technique after air dry in the Single Bond 2 group demonstrated a significant decrease of microtensile bond strength after C-ABC treatment. Collagen architecture is loosely packed and some fibrils are aggregated together and relatively collapsed compared with normal acid-etched wet dentin after C-ABC treatment. Further studies are necessary for the contribution to the collagen architecture of noncollagenous protein under the various clinical situations and several dentin conditioners and are also needed about long-term effect on bond strength of dentin adhesive.

THE EFFECTS OF FLUORIDE RELEASING ORTHODONTIC SEALANT ON THE SHEAR BOND STRENGTH Of LIGHT-AND CHEMICAL-CURED ORTHODONTIC RESINS (불소가 유리되는 교정용 전색제가 광중합형 및 화학중합형 교정용 접착제의 전단결합강도에 미치는 영향)

  • Kim, Bong-Hyun;Yoon, Young-Jooh;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.781-789
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of fluoride relasing orthodontic sealant on the shear bond strength of light-and chemical-cured orthodontic rosins, to compare the shear bond strenth with light-and chemical-cured orthodontic resins, and to identify the changes of shear bond strength by rebonding in vitro. The brackets were divided into eight groups. Each group of metal brackets had different bonding mechanisms with adhesives. Group A : Transbond only Group B : Mono-Lok 2 only Group C : Light cured FluoroBond+Transbond Group D : Light cured FluoroBond+Mono-Lok 2 Group E : Transbond only(rebonded) Group F : Nomo-Lok 2 only(rebonded) Group G : Light cured FluoroBond+Transbond(rebonded) Group H : Light cured FluoroBond+Mono-Lok 2(rebonded) 65 extracted human premolars were prepared for bonding and 65 metal brackets for each group were bonded to prepared enamel surfaces of buccal surfaces as the above prescription. 24 hours bonding after, the Instron universal testing machine was used to test the shear bond strength of metal brackets to enamel. After debonding, same kind of metal brackets for each group were rebonded to prepared enamel surfaces of buccal surfaces to test the shear bond strength at the rebonding to enamel. Statistical analysis of the data was carried out Student's t-test ANOVA test, and Scheffe test using $SPSS/PC^+$ The results were as follows : 1. The order of shear bond strength was Group B(11.84MPa), Group A(10.75MPa), Group, D(9.69MPa), and Group C(9.39MPa)in lst bonded groups. 2. The order of shear bond strength was Group E(7.40MPa), Group G(6.48MPa), Group F(5.89MPa), and Group H(5.15MPa) in rebonded groups. 3. The shear bond strength of chemical cured orthodontic rosins had higher than that of light-cured orthodontic resins in all groups, but there was no statistical significance between groups(P>0.05). 4. In rebonded groups, the shear bond strength of light cured orthodontic rosins had higher than that of chemical cured orthodontic resins, but there was no statistical significance between groups(P>0.05). 5. The shear bond strength of all rebonded groups progressively decreased than that of 1st bonded groups, and there was statistical significance between groups(p<0.05, p<0.001).

  • PDF

COMPARISON OF MICROTENSILE BOND STRENGTH OF COMPOSITE RESTORATION TO ERODED ENAMEL BY SURFACE TREATMENT (접착제의 종류에 따른 침식치아에 대한 복합레진의 결합강도)

  • Lee, Soon-Young;Lee, Kyung-Ho;Noh, Hong-Seok;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.4
    • /
    • pp.348-354
    • /
    • 2011
  • Composite resin has been widely used for eroded enamel. But, as there have been many reports about the differences in physicochemical characteristics of eroded enamel compared with sound enamel, an additional effort was thought necessary to obtain the optimal bond strength. As a possible answer, we came to think about the application of infiltrant resin which is known to have an excellent penetration capacity into enamel. This study was performed for the purpose of comparing the bond strength of composite restoration with or without infiltrant resin under adhesives on the artificially eroded enamel. 60 extracted sound maxillary primary incisors were selected and divided into group 1, 2, 3 according to the number of artificial erosion cycling for 5 minute duration in 1% citric acid of pH 3.2 at $37^{\circ}C$. And the labial surfaces were divided into 3 areas; group A, only resin adhesive was used, group I, only infiltrant resin, group IA, infiltrant resin followed by resin adhesive. Afterwards, every specimen was restored with composite resin. Microtensile bond strength was measured and failure modes were observed. The obtained results were as follows: 1. In comparing the bond strength by the degree of enamel erosion, it was revealed the highest bond strength in group 1, followed by group 2 and 3, showing the lowest bond strength in most eroded group(p<0.05). 2. In comparing the bond strength by surface treatment methods, group IA and I showed higher value than group A(p<0.05), with unsignificant difference between group I and IA(p>0.05). 3. In observation of failure mode, it was shown higher frequency of cohesive failure in order of 1-2-3 and IA-I-A. Conclusively, it was shown decreasing tendency of bond strength as the enamel is more eroded, and infiltrant resin was thought helpful to replace or add to the resin adhesive for optimal bonding with eroded enamel.

Formulation and Skin Penetration Characteristics of Aceclofenac Plaster for Transdermal Delivery (아세클로페낙의 경피 제제설계 및 피부투과 특성)

  • Chung, Jong-Keun;Lee, Min-Suk;Park, Jeong-Hwa;Lee, Jang-Won;Kim, Ha-Hyung;Choi, Young-Wook;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Aceclofenac is an non-steroidal antiinflammatory drug which has been used in the treatment of rheumatoidal rthritis and osteo-arthritis. In order to decrease the gastric ulcerogenic effects and contol the plasma level of aceclofenac, we have developed the transdermal delivery system of aceclofenac plaster, which were formulated employing matrix polymers of acrylates and penetration-enhancers such as $Lauroglycol^{\circledR}$, $Transcutol^{\circledR}$, oleic acid and linoleic acid. Using Franz diffusion cells mounted with a rat skin, transdermal penetration characteristics of the formulations were evaluated by the HPLC assay of aceclofenac and diclofenac, an active metabolite, in the receptor compartment of pH 7.2 phosphate buffered solution. Skin penetration was increased when the content of aceclofenac increased, showing the flux $(J,\;{\mu}g/cm^2/hr)$ of 0.37 and 2.50 for 2% and 6.75% of the content, respectively. The flux$(J,\;{\mu}g/cm^2/hr)$ from plasters made of $Durotak^{\circledR}$ 87-2074, $Durotak^{\circledR}$ 87-2510 and $Durotak^{\circledR}$ 87-2097 were 2.50, 2.77 and 4.39, respectively. $Durotak^{\circledR}$ 87-2074 showed the lowest penetration due to the carboxylic acid group in the polymer, which might form a strong hydrogen bonding with a secondary amine of aceclofenac. Although both $Durotak^{\circledR}$ 87-2510 and $Durotak^{\circledR}$ 87-2097 are amine-resistant adhesives, $Durotak^{\circledR}$ 872510 showed lower penetration than $Durotak^{\circledR}$ 87-2097 because of the hydroxyl group in $Durotak^{\circledR}$ 87-2510, which might form a weak hydrogen bonding with aceclofenac. These results reveal that the functional group in acrylic polymers would greatly affect the release of aceclofenac from the matrix, which is the rate-limiting step in the penetration of aceclofenac through rat skins. The penetration of aceclofenac from plasters using different penetration-enhancers increased in the following order: Transcutol < linoleic acid < oleic acid. And the flux from the plasters containing oleic acid as a penetrationenhancer was 2.22 times greater than that of creams, which suggest that a newly deveolped aceclofenac plaster could be used in the treatment of rheumatoidal arthritis and osteo-arthritis as an advanced transdermal delivery system.

  • PDF