• Title/Summary/Keyword: pH leaching

Search Result 400, Processing Time 0.027 seconds

Ecological Management Plan and Biotope Structure of Namsan Urban Natural Park in Seoul (서울 남산도시자연공원의 비오톱 구조 및 생태적 관리방안)

  • Lee Kyong-Jae;Han Bong-Ho;Lee Soo-Dong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.102-118
    • /
    • 2004
  • The purpose of this study was to propose an ecological management plan by the comprehensive analysis of biotope structures on Namsan Urban Natural Park in Seoul. Classified by actual vegetation, structure of layer and vegetation damage, biotope structures were composed of forest area, compact management area, herb area, cultivated area and non-ecology(urban) area. Succession had seened to stop in the Native forest. Artifical forest was divided into two types. The first, upper layer, was too dense to accommodate lower layer plants, the other case was the appearance of Quercus spp. and the first stage plants of succession following the declination of the upper layer plants. The soil pH of Nam-san Urban Park was 4.21∼4.51, which meant the soil was becoming acid. As the result of acidity, leaching of available nutrition(K/sup +/, NH₄/sup +/, Ca/sup ++/ etc.) was immediately influenced by the natural ecosystem, influence of acid rain was disturbed to becoming organic matter which was use to plants. In the case of a biotope structure management plan, the urban area was prohibited to spread outside. Cultivated and herb area was regenerated to natural forest. In the forest area, the compact management area was maintained with its present condition, and then it is desirable to make a preservation area and to plant shrubs. Planted Pinus densiflora Community was needed to eliminate competitive species of canopy layer, and plant shrubs. Management of deciduous broad-leaved Comm. was maintained in its present conditionand it is desirable to raise the diversity of the understory and shrub layer. The management of the artifical forest seems to be suitable for Q. spp. community. The care of naturalized plants prevents the expansion and restores the structure of wild plants. The soil management was a marked restoration soil ecosystem in order to prevent soil acid and drying.

Sequential Extraction of Heavy Metals in Soils and A Case Study (토양중의 중금속 연속추출방법과 사례연구)

  • Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.469-477
    • /
    • 1994
  • Many researchers have investigated most representative sequential extraction method using various reagents for determining the chemical forms of metals in soils and sediments. In this paper, a newly modified method for sequential extraction scheme based on Tessier's method by Environmental Geochemistry Research, Centre for Environmental Technology, Imperial College, was introduced and examined. In comparison with Tessier's method, originally designed for sediment analysis by Atomic Absorption Spectrophotometry (AAS), the sequential extraction scheme has been developed for the multi-element analysis by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The partitioning of particulate trace elements was classified into five fractions: (i) exchangeable, (ii) bound to carbonates or specially adsorbed, (iii) bound to Fe and Mn oxides, (iv) bound to organic matter and sulphides and (v) residuals. The experimental results of the pilot study for in-house reference material (HRM2) and certified international standard reference material (SRM2711) using the modified method showed not only reasonable precision and accuracy but also acceptable overall recovery rates. In addition, mine dump soils sampled in the Dalsung Cu-W mine, Korea were prepared and sequentially extracted using the method. Most of Cu was bound to organic matter/sulphides and residual fractions. The dominant fraction of soil Pb and Zn in the study area was found in the residuals. The fraction of Cd showed a wide variation between samples and could be found bound to the carbonates or specially adsorbed, oxides, organic fraction and residuals. The recovery rates of Cd, however, were poor due to relatively low Cd concentrations in soils. The heavy metals in these mine dumps appear to be in the more inert forms and should not be readily bioavailable. The soils, however, had very low pH values (average 4.1) and had sandy textures; consequently, rapid infiltration of rainfall may increase leaching of Zn and Cd which were found to be around 5 to 10% of the exchangeable fraction. As a result of the investigation of this study, it has been strongly recommended that these mine waste materials should still be considered a significant contaminant source and will need environmental remediation to prevent pollutants from being released into the environment.

  • PDF

Changes of Soil Properties with Various Soil Amendments in Saemangeum Reclaimed Tidal Saline Soil

  • Lee, Sanghun;Kim, Hong-Kyu;Hwang, Seon-Woong;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.281-287
    • /
    • 2013
  • Due to its high salt content and poor physical properties in reclaimed tidal lands, it is important to ameliorate soil physical properties to improve the efficiency of desalination. The objective of this study was to evaluate the changes of soil properties at Saemangeum reclaimed tidal saline soil with various soil amendments. Field experiment was conducted at Saemangeum reclaimed tidal land in Korea and the dominant soil series was Munpo series (coarse loamy, mixed, nonacid, Mesic, Typic, Fluvaquents). Woodchips, crushed-stone, oyster shell, coal bottom ash, and rice hull were added as soil amendments and mixed into surface soil to improve soil physical properties. There was large variability in soil hardness, but oyster shell treatment was significantly lower soil hardness at surface layer. Soil hardness was not significantly different below 15 cm depth. Infiltration rate was also significantly greater at oyster shell treatment. This may be due to the leaching of Ca ions from oyster shell and improved soil properties. However, there was no statistical significant difference of the soil bulk density, moisture content, and porosity. Improved physical properties increased desalinization rate in soil and retarded the resalinization rate when evapotranspiration rate was high. Although soil salinity was significantly decreased with oyster shell amendment, soil pH was increased that should be made up as a soil amendment. Our results indicated that oyster shell application increased infiltration rate and improved soil hardness, and thus oyster shell could be used to improve soil salinity level at Saemangeum reclaimed tidal saline soil.

A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid (Palladium 촉매와 포름산을 활용한 액상 trinitrotoluene 분해 특성 연구)

  • Jeong, Sangjo;Choi, Hyungjin;Park, Sangjin;Lee, Juneil
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.468-475
    • /
    • 2015
  • Various methods to degrade explosives efficiently in natural soil and water that include trinitrotoluene (TNT) have been studied. In this study, TNT in water was degraded by reduction with palladium (Pd) catalyst impregnated onto alumina (henceforth Pd-Al catalyst) and formic acid. The degradation of TNT was faster when the temperature of water was high, and the initial TNT concentration, pH, and ion concentration in water were low. The amounts of Pd-Al catalyst and formic acid were also important for TNT degradation in water. According to the experimental results, the degradation constant of TNT with unit mass of Pd-Al catalyst was $8.37min^{-1}g^{-1}$. The degradation constant of TNT was higher than the results of previous studies which used zero valent iron. 2,6-diamino-4-nitrotoluene and 2-amino-4,6-dinitrotoluene were detected as by-products of TNT degradation showing that TNT was reduced. The by-products of TNT were also completely degraded after reaction when both Pd-Al catalyst and formic acid existed. Even though there are several challenges of Pd-Al catalyst (e.g., deactivation, poisoning, leaching, etc.), the results of this study show that TNT degradation by Pd-Al catalyst and formic acid is a promising technique to remediate explosive contaminated water and soil.

Assessment of the physico-chemical quality and extent of algal proliferation in water from an impounding reservoir prone to eutrophication

  • Ballah, Mohun;Bhoyroo, Vishwakalyan;Neetoo, Hudaa
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.22-30
    • /
    • 2019
  • Background: Piton du Milieu (PdM) impounding reservoir is suspected to be eutrophic based on the elevated level of orthophosphate and nitrate. Water supplies from three adjacent rivers are primarily thought to contribute to the nutrient enrichment of the reservoir. It is also suspected that there is leaching of orthophosphate, nitrate and organic matter into the rivers during rainfall events and also as a result of anthropogenic activities within the catchment area. The aim of this study was to ascertain the impact of nutrient loading on the water quality of PdM water and on the population of freshwater microalgae in the reservoir. The enumeration and identification of algae from PdM were performed by differential interference contrast microscopy. Dissolved oxygen (DO) and pH were determined by electrometric methods, whereas nutrient levels, silica and total organic carbon (TOC) were determined by instrumentation techniques. Results: Annual mean orthophosphate, nitrate and total organic carbon input from the three feeders within the catchment area of PdM reached levels as high as 0.09 mg/L, 0.4 mg/L and 2.62 ppm respectively. Over a 12-month period, mean TOC concentration in the reservoir was 2.32 ppm while the mean algal cell count was 4601 cells/mL. The dominant algal species identified were Oscillatoria, Cyclotella, Navicula and Cosmarium. Conclusion: This study highlights the trophic state of the reservoir water and clearly points to the need for constant monitoring in order to avoid the occurrence of an impending harmful algal bloom.

Adsorption characteristics of NH4-N by biochar derived from pine needles

  • Kang, Yun-Gu;Lee, Jun-Young;Chun, Jin-Hyuk;Lee, Jae-Han;Yun, Yeo-Uk;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.589-596
    • /
    • 2021
  • Nitrogen applied to soil is highly prone to leaching and volatilization leading to gaseous emissions of nitrous oxide (N2O) and ammonia (NH3) which are of great environmental concern. Usage of biochar to reduce the discharge of nitrogen to the environment has attracted much interest in the recent past. Biochar is produced by pyrolyzing various biomasses under oxygen-limited conditions. Biochar is a carbonized material with high adsorptive powers for not only plant nutrients but also heavy metals. The objective of this study was to investigate the adsorption characteristics of NH4-N onto biochar made from pine needles. The biochar was produced at various pyrolysis temperatures including 300, 400 and 500℃ and holding times of 30 and 120 minutes. The Langmuir isotherm was used to evaluate the adsorption test results. The chemical properties of the biochar varied with the pyrolysis conditions. In particular, the pH, EC and total carbon content increased with the increasing pyrolysis conditions. The rate of adsorption of NH4-N by the biochar decreased with the increasing pyrolysis conditions. Of these conditions, biochar that was pyrolyzed at 300℃ for 30 minutes showed the highest adsorption rate of approximately 0.071 mg·g-1. Thus, the use of biochar pyrolyzed at low temperatures with a short holding time can most efficiently reduce ammonia emissions from agricultural land.

A study of characteristics of cumulative deposition of fallout Pu in environmental samples

  • Lee, Myung Ho;Song, Byoung Chul;Jee, Kwang Yong;Park, Yeong Jae;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2006
  • This paper describes the cumulative deposition of fallout Pu in soil and lichen at the present time and give the characteristics of fallout Pu deposits in the soil. In the soil of the forest, the accumulated depositions of $^{239,240}Pu$ were estimated to be in the range of 34.0 to $101.2Bq\;m^{-2}$ with an average value of $65.3{\pm}21.6Bq\;m^{-2}$. The average inventory of $^{239,240}Pu$ in the forest was calculated to be two times higher than that in the hill. Also, the deposited activities of $^{239,240}Pu$ in cultivated soil were significantly lower than those in the hill or forest. However, the cumulative depositions of fallout Pu in the volcanic ash soil on Cheju Island were much higher than those in the forest and hill soils. The measured activity concentrations of Pu isotopes in lichens and mosses showed large variations, due to characteristics of species and life span of lichen and moss colonies. From depth profiles, it was found that most of the fallout Pu has been accumulated in upper 10 cm layer of soil. Except for a few cases, the concentrations of $^{239,240}Pu$ in soil tended to decrease exponentially with increasing soil depth. Among parameters affecting the cumulative deposition of fallout Pu, organic substances and rainfall play an important role in the retention and relative mobility of fallout Pu in the soil. However, pH showed a weak correlation with the deposition of fallout Pu in the soil. From sequential leaching experiments, Pu was found to be associated predominantly with the "organic" and "oxy-hydroxy" fractions. Both the activity ratios of $^{238}Pu/^{239,240}Pu$ and $^{241}Pu/^{239,240}Pu$ in soils, lichens and mosses and the atomic ratios of $^{240}Pu/^{239}Pu$ in soils are close to those observed in the cumulative deposit global fallout from nuclear weapon testings. The results obtained from this research make it possible to interpret and predict the behavior of fallout Pu under natural conditions.

A Unique Prokaryotic Assemblage of Wall Biofilm of a Volcanic Cave (Daesubee) in Jeju (제주도 용암동굴 대섭이굴 미생물 막의 독특한 원핵미생물 군집)

  • Moon, Jong-Geun;Jung, Man-Young;Kim, Jong-Geol;Park, Soo-Je;Kim, Dae-Shin;Kim, Jong-Shik;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.184-190
    • /
    • 2013
  • Cave environment provides special ecosystems for evolution of lives distant from surface environments. We investigated bacterial and archaeal communities of wall biofilm obtained from of a volcanic cave (Daesubee) in Jeju, Republic of Korea. Bacterial and archaeal 16S rRNA genes were PCR-amplified and sequenced using pyrosequencing technologies. Unique prokaryotic communities with low diversities were observed. The main bacterial sequences (ca. 83% of total reads) were affiliated with Pseudonocardia mongoliensis of phylum Actinobacteria and clustered with clones obtained from various caves. Reflection of light on the wall surface of cave might be caused by formation of beads of water caused by hydrophobic filaments of actinobacterial colonies. Main archaeal sequences (ca. 65.7% of total reads) were related with those of I.1a-Associated group of phylum Thaumarchaeota. The sequences were related with that of Candidatus Nitrosotalea devanaterra which was known to oxidize ammonia under acidic condition (ca. pH 5.0). Nutrients leached through volcanic soils contribute formation of unique microbial communities of wall biofilm of cave Daesubee.

Comparison of Li(I) Precipitation from the Leaching Solution of the Dust from Spent Lithium-ion Batteries Treatment between Sodium Carbonate and Ammonium Carbonate (폐리튬이온전지 처리시 발생한 더스트 침출용액으로부터 Na2CO3와 (NH4)2CO3에 의한 리튬(I) 석출 비교)

  • Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.34-41
    • /
    • 2022
  • Smelting reduction of spent lithium-ion batteries results in metallic alloys, slag, and dust containing Li(I). Precipitation of Li2CO3 was performed using the synthetic leachate of the dust. Herein, the effects of the precipitant and addition of non-aqueous solvents on the precipitation of Li(I) were investigated. Na2CO3 was a more effective precipitating agent than (NH4)2CO3 owing to the hydrolysis reaction of dissolved ammonium and carbonate. The addition of acetone or ethanol improved the Li(I) precipitation percentage for both the precipitants. When using (NH4)2CO3, the Li(I) precipitation percentage increased at a solution pH of 12. Under the same conditions, the Li(I) precipitation percentage using Na2CO3 was much higher than that using (NH4)2CO3.

Influence of Gravel Content and Nitrogen Application on Nitrogen Leaching by the Leachate and Chinese Cabbage Growth in Highland (자갈함량과 질소시비량이 고랭지 배추재배시 침투수에 의한 질소용탈 및 생육에 미치는 영향)

  • Park, Chol-Soo;Lee, Gye-Jun;Jung, Yeong-Sang;Joo, Jin-Ho;Hwang, Seon-Woong
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Continuous monocropping of Chinese cabbage in Gangwon highland increased gravel and sand contents due to surface soil erosion. Nutrient leaching and Chinese cabbage growth were investigated with different treatments of gravel contents and nitrogen application levels by using $0.5m^2$ Wagner pots. Gravel contents were 0, 10, 30, 50, 70, and 90%(w/w), nitrogen application levels were 60, 120, and 240 kg/ha, and manure compost application rate was 15 ton per hectare, respectively. Wagner pots were filled with loamy sand soil mixed with 5 cm-sized gravels. Fresh weight of Chinese cabbage was decreased as gravel contents in soil increased, and particularly severely decreased at 240 kg-N/ha. Yields of Chinese cabbage were remarkably decreased at the rate of 60 kg-N/ha with 30% gravel content and 120 kg-N/ha with 50% gravel content. Most of Chinese cabbages were severely wilted by heavy N application at the rate of 240 kg-N/ha in the middle of growth stages regardless of gravel contents, while about 50% of Chinese cabbage showed wilting symptom in the treatment of more than 50% of gravel contents and 120 kg-N/ha. N content in leachate increased as gravel content and N application increased. The relationship between gravel content and N contents showed linear regression: N in leachate = 0.014(gravel content) -0.039 (r = 0.961). Particularly, $NH_4-N$ contents in leachates with more than 30% gravel content and 240 kg-N/ha ranged from $139{\sim}339mg/L$. Chinese cabbage growth in loamy sand soil containing 30%, and 50% gravel contents could be adversely affected by N application at the rate of 240, and 120 kg-N/ha, respectively.