• Title/Summary/Keyword: pH leaching

Search Result 399, Processing Time 0.024 seconds

Studies on the Herbicidal Properties of Bensulfuron methyl(DPX-F5384) -1. Variation of Phytotoxicity and Weeding Effect Caused by Herbicide Treatment in Mechanically Transplanted Paddy Field (제초제(除草劑) Bensulfuron methyl(DPX-F5384)의 작용특성(作用特性)에 관한 연구(硏究)- 제1보(第1報) 기계이앙답(機械移秧畓)에서의 약해(藥害) 및 약효(藥效) 변동요인(變動要因))

  • Ryang, H.S.;Jang, I.S.;Ma, S.Y.;Jeong, S.H.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.134-145
    • /
    • 1986
  • The experiment was crried out to evaluated the herbicidal properties of bensulfuron methyl [methyl 2-[[[[[(4, 6-dimethoxy pyrimidine-2yl) amino] carbonyl] amino] sulfonyl] methyl] benzoate]. No phytotoxicity was observed when bensulfuron methyl was applied at 3 and 6 g a.i./ 10a while the application rate 12 g a.i./10a slightly retared the growth of rice. The phytotoxicity decreased as the application time was delayed. The effect of application rate, leaching grade, transplanting depth, soil type and temperature on crop injury was little. Japonica variety (Dong-Jin) was more sensitive to bensulfuron methyl than indica X japonica variety (Sam-Kang). Bensulfuron methyl controlled effectively perennial weeds such as Sagittaria pygmaea Miq., Potamogeton diatinctus A. Benn., Cyperus serotinus Rottb., Sagittaria trifolia L., Eleocharis kuroguwai Ohwi. including most annual weeds except Echinochloa crus galli P. Beauv. The effect slightly decreased with lowering the temperature increasing the leaching grade. Application time and soil type employed did not affect the weeding effect.

  • PDF

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

Soil stabilization by ground bottom ash and red mud

  • Kim, Youngsang;Dang, My Quoc;Do, Tan Manh;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper presents results of a compressive investigation conducted on weathered soil stabilized with ground bottom ash (GBA) and red mud (RM). The effects of water/binder ratio, RM/GBA ratio, chemical activator (NaOH and $Na_2SiO_3$) and curing time on unconfined compressive strength of stabilized soils were examined. The results show that the water/binder ratio of 1.2 is optimum ratio at which the stabilized soils have the maximum compressive strength. For 28 days of curing, the compressive strength of soils stabilized with alkali-activated GBA and RM varies between 1.5 MPa and 4.1 MPa. The addition of GBA, RM and chemical activators enhanced strength development and the rate of strength improvement was more significant at the later age than at the early age. The potential environmental impacts of stabilized soils were also assessed. The chemical property changes of leachate from stabilized soils were analyzed in terms of pH and concentrations of hazardous elements. The observation revealed that the soil mixture with ground bottom ash and red mud proved environmentally safe.

Effect of Soil Water Contents on Urea Hydrolysis and Nitrification in a Newly Reclaimed Tidal Soils

  • Park, Mi-Suk;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • The effect of soil water content on the transformation potential of N compounds derived from hydrolysis of urea applied in a reclaimed tidal soils which was saline-sodic was observed to evaluate nitrification rates of urea. Soil samples were collected from Moonpo series at the newly reclaimed area in Saemanguem. For the transformation potential of N compounds from urea (46% N), newly reclaimed tidal soils (RS) were amended with urea at the rates of 0, 10, and 20 kg $10a^{-1}$. With leachate obtained from the incubated RS in a leaching tube at $25^{\circ}C$, urea hydrolysis and nitrification were measured for a total of 30days. The cumulative amounts of $NO_3{^-}$-N in each of the four soils treated with urea was linear with time of incubation. Results showed that increase in pH occurred with increasing application rate of urea and volumetric water content due to hydrolysis of urea. The total N in the RS was decreased with incubation time, indicating that rates of urea hydrolysis was influenced by soil moisture conditions. Also, the cumulative amount of nitrate in RS gradually increased with increase in time of incubation.

Immobilization of jack bean (Canavalia ensiformis) urease on gelatin and its characterization

  • Kumar, Sandeep;Kansal, Ajay;Kayastha, Arvind M
    • Advances in Traditional Medicine
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 2005
  • Jack bean urease was immobilized on gelatin beads with the help of glutaraldehyde. The optimum immobilization (67.6%) was obtained at 30mg/ml gelatin concentration, 0.5 mg/bead enzyme protein concentration, 1 % glutaraldehyde and at $4^{\circ}C$ incubation temperature. The $t_{1/2}$ of immobilized urease was approximately 90 days at $4^{\circ}C$ compared with $t_{1/2}$ of 20 days for the soluble urease, under identical condition. The apparent optimum pH shifted from 7.3 to 8.0 when the urease was immobilized. The optimum stability temperature of immobilized urease was found to be $60^{\circ}C$ while that of soluble urease was $45^{\circ}C$. Time-dependent thermal inactivation studies showed monophasic kinetics for soluble urease and immobilized urease at $70^{\circ}C$, respectively. The immobilized urease beads stored at $4^{\circ}C$ showed practically no leaching over a period of 30 days. Here we are presenting an easy and economical way of immobilizing urease on the gelatin beads making it suitable for various applications.

A Experimental Study on Improvement of Marine Clay through the Electrolytic Leaching Effect in Aluminum Electrode (알루미늄 전극의 용출에 따른 해성점토의 개량에 관한 실험적 연구)

  • Kim, Jong-Yun;Yun, Myung-Suk;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1173-1180
    • /
    • 2006
  • In this study, aluminum electrodes were put in marine clay which was taken from the south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitates which were developed by electric decomposition in an electrode. To raise the cementation rate and reduce treatment time, high electric current (2.5A) was applied in each electrode at a semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using a static cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. In the results of electric decomposition in aluminum electrode, the measured shear strength was increased considerably compared to the initial shear strength because of the cementation effect between iron ions and soil particles.

  • PDF

Optical Probe for Determination of Chromium(III) Ion in Aqueous Solution Based on Sol-Gel-Entrapped Lucigenin Chemiluminescence

  • Li, Ming;Kwak, Jun-Hee;Kim, Chang-Jin;Lee, Sang-Hak
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.103-108
    • /
    • 2003
  • A method to determine chromium(III) ion in aqueous solution by chemiluminescence method using a lucigenin entrapped silica sol-gel film has been studied. An optical probe for chromium(III) ion has been prepared by entrapping lucigenin into silica sol-gel film coated on a glass support by dip coating. The chromium(III) optical sensor is based on the catalytic effect of chromium(IIII) ion on the reaction between lucigenin and hydrogen peroxide in basic solutions. The effects of Nafion, DMF and Triton X-100 were investigated to find the optimum condition to minimize cracking and leaching from the probe. The effects of pH and concentrations of lucigenin and hydrogen peroxide on the chemiluminescence intensity were investigated. The chemiluminescence intensity was increased linearly with increasing chromium(III) concentration from $2.5{\times}10^{-4}$M to $8.0{\times}10^{-7}$M and the detection limit was $4.0{\times}10^{-7}$M.

  • PDF

Release Pattern of Urea from Metal-urea-clay Hybrid with Montmorillonite and Its Impact on Soil Property

  • Kim, Kwang-Seop;Choi, Choong-Lyeal;Lee, Dong-Hoon;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.545-550
    • /
    • 2011
  • Urea intercalated into montmorillonite (MT) exhibits remarkably enhanced N use efficiency, maintaining its fast effectiveness. This study dealt with the release property of urea from metal-urea-clay hybrid with MT (MUCH) under continuous-flow conditions and the cumulative impacts of its successive application on physicochemical properties of soils. Releases of urea were completed within 4 hrs under continuous-flow condition regardless of the types and the leaching solutions. However, urea release property was significantly affected by both the form of fertilizer and the presence of electrolytes in solution. The fast release property of urea from MUCH in continuous-flow condition was not significantly affected by soil properties such as soil pH and soil texture. In addition, its successive application did not lead to any noticeable change in soil physicochemical properties, water stable aggregate rate, water holding capacity and cation exchange capacity in both sandy loam and clay loam soils. Therefore, this study strongly supported that urea intercalated into MT could be applied as fast-effective N fertilizer, in particular for additional N supply.

Application of multivariate statistics towards the geochemical evaluation of fluoride enrichment in groundwater at Shilabati river bank, West Bengal, India

  • Ghosh, Arghya;Mondal, Sandip
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.279-288
    • /
    • 2019
  • To obtain insightful knowledge of geochemical process controlling fluoride enrichment in groundwater of the villages near Shilabati river bank, West Bengal, India, multivariate statistical techniques were applied to a subgroup of the dataset generated from major ion analysis of groundwater samples. Water quality analysis of major ion chemistry revealed elevated levels of fluoride concentration in groundwater. Factor analysis (FA) of fifteen hydrochemical parameters demonstrated that fluoride occurrence was due to the weathering and dissolution of fluoride-bearing minerals in the aquifer. A strong positive loading (> 0.75) of fluoride with pH and bicarbonate for FA indicates an alkaline dominated environment responsible for leaching of fluoride from the source material. Mineralogical analysis of soli sediment exhibits the presence of fluoride-bearing minerals in underground geology. Hierarchical cluster analysis (HCA) was carried out to isolate the sampling sites according to groundwater quality. With HCA the sampling sites were isolated into three clusters. The occurrence of abundant fluoride in the higher elevated area of the observed three different clusters revealed that there was more contact opportunity of recharging water with the minerals present in the aquifer during infiltration through the vadose zone.

Effects of storage temperature on quality characteristics of texturized vegetable protein

  • Seul Lee;Sun Young Jung;Mi Sook Seo;Chan Soon Park
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • This study evaluated the impact of storage temperature on the quality characteristics of texturized vegetable protein (TVP). TVP was prepared by mixing defatted Daewon soybean flour at 80℃, gluten, and corn starch in a 5:3:2 ratio, which was then extruded at a screw speed of 250 rpm and a barrel temperature of 190℃ with moisture addition at 9 rpm. Subsequently, the extruded TVP was vacuum-sealed in polyethylene packaging and stored at -20℃, 0℃, and 4℃ for 9 days. Texture analysis revealed that the curing rate followed 4℃ > 0℃ > -20℃ sequence. No significant color variation was observed across the storage conditions, although water content increased at all temperatures. Notable changes were detected in moisture absorption capacity (%) and solid leaching (%), following the order of -20℃ > 0℃ > 4℃. The turbidity of the solution released during cooking varied, with the highest to the lowest sequence being -20℃ > 4℃ > 0℃, while pH levels remained neutral. Regarding free amino acids, sweetness and textural quality improved with storage across all temperatures, whereas bitterness components diminished at 4℃. The study suggests that refrigerated storage at 4℃ is a viable method for distributing TVP, which was previously distributed only in a frozen and dry state.