• Title/Summary/Keyword: pH distribution

Search Result 1,706, Processing Time 0.025 seconds

Proteolytic Enzyme in the Midgut during Metamorphosis of Pieris rapae L (배추흰나비의 變態에 EK른 中腸內 蛋白質分解酵素)

  • Kim, Hak-Ryul;Yoe, Sung-Moon
    • The Korean Journal of Zoology
    • /
    • v.25 no.2
    • /
    • pp.63-70
    • /
    • 1982
  • The activity, properties, and distribution of midgut protease during metamorphosis in Pieris rapae L. are determined using spectrophotometer, ultracentrifuge and agar gel electrophoresis. Proteolytic activity of midgut reaches the peak just before ecdysis in 5th instar and prepupal stages each but 1 day after ecdysis in pupal stage. Also, optimum pH of midgut protease is pH 8.0 in 5th instar stage, pH 6.5 in prepupal stage, and pH 8.5 immediately before emergence respectively. Protease is found mostly in midght tissue in 5th instar stage but thereafter until just before emergence the enzyme only in lumen contents, suggesting that protease is synthesized in midgut tissue during larval stage and then released into lumen during pupation period.

  • PDF

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

Internal Corrosion Control of Drinking Water Pipes by pH and Alkalinity Control and Corrosion Inhibitor (수질제어 및 부식억제제에 의한 상수도관의 내부부식 제어)

  • Kuh, Sungeun;Woo, Dalsik;Lee, Doojin;Kim, Juwhan;Ahn, Hyowon;Moon, Kwangsoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.215-223
    • /
    • 2006
  • The internal corrosion of water distribution systems is the main cause for the problem of the public health threat as well as water leakage in the damaged pipeline, red water, and odor and taste of the tap water. This study was examined the effect of chemicals used for pH and alkalinity control and corrosion inhibitors for producing the optimal corrosion control method. Corrosion study at different pH and alkalinity indicated that these control using alkaline chemicals was effective in corrosion rate, Fe release reduction, but examined to be increased in turbidity and corrosion-by-products(TTHMs) problems. The turbidity was slightly increased, requiring caution in controlling corrosion with $Ca(OH)_2$. At pH 9.0, TTHMs concentration is increased two times corn pared with non-control of pH. Using the pipe which had experienced 28 years of exposure, iron release was decreased with the corrosion inhibitor. Consequently, pH, Alkalinity control method using alkaline chemicals must be complemented by corrosion inhibitor application for efficient corrosion control.

Effect of pH of Aluminum Hydroxides Gel Obtained by Hydrolysis of Al2(SO4)3 Solution on Crystal Growth of α−Al2O3 (Al2(SO4)3 용액의 가수분해에 의해 얻어진 Aluminum Hydroxides Gel의 pH가 판상 α−Al2O3의 결정성장에 미치는 영향)

  • Choe, Dong-Uk;Park, Byung-Ki;Han, Myung-Wan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.562-567
    • /
    • 2007
  • To precipitate the complex gels of the pH 6, 7, 8, 9 included in a flux and an aluminum hydroxides gel, an aqueous solution of a mixture of $Na_2CO_3\;and\;Na_2PO_4{\cdot}12H_2O$ was added with stirring in an aqueous solution of a mixture of $Al_2(SO_4){_3}{\cdot}18H_2O,\;Na_2SO_4\;and\;K_2SO_4$, and then the complex gels were aged in 20 h at $90^{\circ}C$. As the hydrolysis pH changed, it had an effect on the physical properties such as the crystal structure, crystal morphology and a phase transition temperature of the AlO(OH) gel, and also on the crystal structure, crystal morphology, particle size and particle size distribution of the ${\alpha}-Al_2O_3$ platelets prepared by molten-salt precipitation. Also, in this study, the complex gels were crystallized at $1,200^{\circ}C$ and thereafter dried at $110^{\circ}C$, and then it was investigated to effect of the hydrolysis pH on the crystal structure, morphology and particle size distribution of the ${\alpha}-Al_2O_3$ platelets crystals using XRD, DTA, SEM and particle size analyzer.

The Effect of pH on the Mineral Nutrient Uptake in the Rice Seedlings (벼의 무기양분 흡수에 미치는 pH 의 영향)

  • Chang, Nam-Kee;Bok-Seon Lee
    • The Korean Journal of Ecology
    • /
    • v.6 no.4
    • /
    • pp.243-249
    • /
    • 1983
  • Absorption pattern of potassium, calcium, phosphate and nitrate ions, and the pH change during ion-absorption at pH 3.0-11.0 by Oryza sativa L. were studied to investigate indirectly the evidence of H^+-efflux by ATPase. The rice seedlings which were grown either in $L^{\circ} -dark or in L^+-sunlight$, were used both in each ion-absorption to compare with one another. The uptake rate of these ions appeared to favor more in $L^+than in L^{\circ}$, over all range in pH, nearly with the same pattern. The absorption of potassium resulted in bell shape and that of calcium increased linearly to the alkali range. The shape of phosphate-absorption showed nearly the t-distribution curve with high value in acid range and the uptake of nitrate resulted in the dual peaks, but higher in acid range. The pH of the external solution changed from the range of 3.5-11.0 to 3.5-7.0 after lhr-absorptioin, and further acidified after 3hr-absorption. It is suggested that the pH change of the external solution be affected by $ H^+-efflux$ which may be caused by the ATP-hydrolysis.

  • PDF

Studies on Acid Precipitation in Seoul (서울시의 산성물질 강하현상에 관한 연구)

  • 孫東憲;梁聖七
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 1985
  • In order to investigate the Phenomenon of Acid Precipitation, pH value and Anions of Fluroide, chloride, nitrite, phosphate, bromide, nitrate and sulfate were measured from the acid precipitations sampled around 7 districts over seoul area during period of 9 months from January till September, in 1985. From the distribution of pH value gatnered, acid precipitations were noticed during period from January till Aprill, and from as of April 22nd, situation gradually recovered. The average pH value till April showed comparatively low, ranging 4.0-5.0. The pH value of 4.5-5.6 in average over whole year reaches to similar level of those in Japan. Anion analysis revealed that the main factor of pH value in Seoul district attribute mainly to the sulfate ion and nitrate ion. Moreover, these Phenomena of acid precipitation in Seoul area appeared to concentrate on certain districts, and they are slowly moving toward other directions due to such factors as wind-velocity and directions.

  • PDF

The Amounts of the Available Phosphorus in Soils of Kwang-nung Forest (광릉삼림토양의 유효인산량에 관하여)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.11 no.3
    • /
    • pp.18-22
    • /
    • 1968
  • Determination of the pH value and analyses of the available phosphorus of some soils under the forest and grassland Kwang-nung have been examined to study the relationship between the soil pH and available phophorus. The results might be summarized as follows: 1) The available phosphorus decrease steadily as the pH goes up to 5.2. However, at the pH 5.2∼6.3, it shows an increase and decreases again as the rise above pH 6.3. 2) There is a significant difference in the amounts of the soil phosphate among the areas sampled. 3) The statistical analysis of the data obtained shows that soil phosphate is limiting factor governing the distribution of natural vegetal pattern.

  • PDF

The Influence of pH on Corrosion Behavior of Copper Tubes in Tap Water (수돗물의 pH가 동관의 부식에 미치는 영향)

  • Min, Sung-Ki;Na, Seung-Chan;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.232-237
    • /
    • 2009
  • Copper tubes are widely used in the distribution systems of drinking water throughout the world because of their excellent corrosion resistance, high thermal conductivity, and ease of fabrication. However, corrosion problems from copper tubes as blue water phenomenon and leakage have been reported appreciably. The effect of pH on the corrosion behavior of copper tube for tap water was investigated by electrochemical voltammetric techniques in synthetic tap water. And the copper corrosion cases were discussed from the viewpoint of factors affecting the corrosion rate such as pH, alkalinity, LSI(Langelier Saturation Index), and concentration of bicarbonate and dissolved carbon dioxide.

Investigation on the Factors Determining the Size Distribution of Gold Nanoparticles in the Citrate Reduction Method

  • Kang, Ae-Yeon;Park, Dae-Keun;Lee, Cho-Yeon;Yun, Wan-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.554-554
    • /
    • 2012
  • Controlling the size distribution of gold nanoparticles (NPs) is of great importance due to the fact that their properties are strongly dependent upon the size distribution as well as the size itself. In the citrate reduction method for gold NP synthesis, the citrate works as (1) a reducing agent, (2) a surfactant, and also (3) a weak base: it raises the pH of the whole reaction mixture. Here, we have extensively studied the all three roles of the citrate, by adding other reagents separately (NaBH4, CTAB, and NaOH) for the independent control of the three roles of the citrate. Among the roles of the citrate, that as a weak base was found to be the most critical parameter affecting the size distribution of gold NPs and the size distribution became much more improved with the increase of the solution pH, while adding a supplementary surfactant or reducing agent resulted in the formation of less homogeneous NPs.

  • PDF

Establishment of Effective Freshness Indicators for Seafood During Room-Temperature Distribution Using Commercial Cold Packs and Styrofoam Boxes (시판 보냉팩 및 스티로폼 박스 상온 유통시 효율적인 수산물 선도지표 설정)

  • Lee, Ji Un;Heu, Min Soo;Lee, Jung-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.670-680
    • /
    • 2022
  • Owing to the lack of a cold-chain distribution system, most seafood is generally distributed under room temperature conditions. However the degradation of freshness during the distribution process can lead to disputes between sellers and consumers. The most widely used method for low-temperature distribution for seafood includes packaging it with styrofoam boxes and cold packs. In this study, vacuum-packed frozen fillets of four fish species of [white meat (Paralichthys olivaceus and Sebastes schlegelii) and red meat (Scomber japonicus and Scomberomorus niphonius)] were placed in styrofoam boxes with cold packs. Thereafter, changes in chemical (including pH, volatile basic nitrogen, and trimethylamine), physical (odor intensity, hardness, and chewiness), and microbial (viable cell count) characteristics of the fillets were measured during storage at 25℃. To identify the suitable method of determining freshness during the room-temperature distribution, several factors were considered, which included significant difference verification, correlation coefficients, and economic efficiency (experimental cost and time). Volatile basic nitrogen, pH, odor intensity, and viable cell count are the most rapid and accurate freshness indicators for determining freshness of frozen fish fillets during.