• Title/Summary/Keyword: pH cycling model

Search Result 10, Processing Time 0.019 seconds

THE REMINERALIZING EFFECTS OF EARLY ENAMEL CAR10US LESION BY SUPERSATURATED BUFFER SOLUTION UNDER PH CYCLING MODEL (pH 순환 모델에서 과포화 용액의 초기 우식 법랑질에 대한 재광화 효과)

  • 김소라;홍석진;노병덕;이찬영;금기연
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.341-349
    • /
    • 2001
  • Dental caries is the most common oral disease. There are many factors contributing to its development, but complete understanding and prevention are not fully known. However, it is possible to remineralize the early enamel curious lesion by fluoride containing remineralization solution. Recently the pH-cycling model has been used to examine the effect of fluoride solution on remineralization of artificial caries in vitro as it can closely simulate the conditions encountered in vivo within a carefully controlled environment. The aim of this study was to evaluate the remineralizing effects of supersaturated buffer solutions under pH-cycling model. The specimen with 3mm-diameter was made using mature bovine incisors which has no caries and has sound enamel surface. Early curious lesions were produced by suspending each specimens into demineralization solution at pH 5.0 for 33 hours and the specimen whose surface hardness value ranged from 25 to 45 VHN were used. The pH cycling treatment regimen consisted of 5 min soaks of three treatment solutions four times per days for 15 days and the continuous cycling of demineralization and remineralization were carried out for 15 days. Following the pH-cycling treatment regimen, the specimens' surface microhardness were measured by the Vickers hardness test (VHN) and analyzed by ANOVA and Duncan's multiple-range test. 1. The surface microhardness value of supersaturated solution, Senstime, and Gagline groups were increased after pH cycling, and that of supersaturated solution was significantly Increased compared to saline group(P<0.05). 2. The surface remineralization effect of fluoride containing solutions was accelerated by saliva under pH-cycling mode 3. The pH cycling model was considered appropriate to mimic the intra-oral pH changes when evaluating demineralization and remineralization in vitro. Under the results of above study, salivary remineralization effect can be improved by fluoride containing remineralization solution. The pH-cycling model was considered appropriate to mimic the intra-oral pH changes when evaluating demineralization and remineralization in vitro.

  • PDF

The Surface Characteristics of Enamel according to Fluoride Application Methods and Frequency (불소 도포 방법과 적용 횟수에 따른 법랑질의 표면 특성)

  • Jang, Sun-Ok;Choi, Eun-Mi;Oh, Sang-Hwan;Kang, Min-Kyung;Kim, Kwang-Man
    • Journal of dental hygiene science
    • /
    • v.11 no.2
    • /
    • pp.69-76
    • /
    • 2011
  • The aim of this study was to compare the effects on the resistance to demineralization by the frequency and method of fluoride application in vitro. ninety-one human enamel specimens were embedded in acrylic resin with the labial surfaces exposes. The specimens were divided into 7 groups; (1) non-treated; (2) 1.23% APF gel 1 time; (3) 2% NaF sol 1 time; (4) 2% NaF sol iontophoresis 1 time; (5) 1.23% APF gel 4 time; (6) 2% NaF sol 4 time; (7) 2% NaF sol iontophoresis 4 time. All the groups were immersed in the remineralizing solution (RS) before baseline and divided into 7 test groups of 13 specimens each. All the specimens were exposed to a pH-cycling model which consisted of demineralization (6 hours) and remineralization (18 hours) for 5 days. The Vickers surface micro-hardness number of all the specimens was measured using microhardness tester and the specimen surfaces were observed by scanning electron microscope (SEM). The results were analyzed using one-way ANOVA followed a Tukey's multiple comparison at a significance level of 0.05. The group 7 showed higher level of microhardness after Fluoride application. The group 1 showed lowest level of microhardness but group 7 showed higher level of microhardness after pH-cycling model, there were significant differences between groups. After the modified pH-cycling, the 2% NaF solution with the iontophoresis group showed the best resistance to demineralization(p<0.05). These results were also confirmed by SEM. The fluoride iontophoresis method was the most effective of the regimens in increasing the acid resistance of the enamel.

The effect of tooth bleaching agent contained 15% carbamide peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials by using pH cycling model (pH 순환 모형을 이용하여 15% 과산화요소를 함유한 치아미백제가 심미수복재의 색, 미세경도 및 거칠기에 미치는 영향)

  • Park, So-Young;Song, Min-Ji;Jeon, Su-Young;Kim, Sun-Young;Shim, Youn-Soo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.13 no.2
    • /
    • pp.351-360
    • /
    • 2013
  • Objectives : The purpose of this study was to evaluate the effects of tooth bleaching agent contained 15% carbamide peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials by using pH cycling model. Methods : Four types of tooth-colored restorative materials, including a composite resin(Filtek Z350 ; Z350), a flowable composite resin(Filtek P60 : P60), a compomer(Dyract$^{(R)}$ AP ; DY), and a glass-ionomer cement(KetacTM Molar Easymix ; KM). were used in the study. Eighty-eight specimens of each material were fabricated, randomly divided into two groups(n=44): experimental group(15% carbamide peroxide) and control group(distilled water). These groups were then divided into four subgroups(n=11). All groups were bleached 4 hours per day for 14 days using pH cycling model. The authors measured the color, microhardness, and roughness of the specimens before and after bleaching. The data were analyzed with ANOVA and T-test. Results : Z350 and P60 showed a slight color change(${\Delta}E^*$), whereas DY and KM showed significantly color change(p<0.05). Among them, the greatest color change was observed in DY. Percentage microhardness loss(PML) of the distilled water group was 1.8 to 5.1%, and 15% peroxide peroxide group was 5.0 to 25.2%. Microhardness of DY and KM showed a statistically significant decrease(p<0.05). Roughness was increased in all groups after bleaching. Z350 and P60 does not have a significant difference(p>0.05), however DY and KM significantly increased more than the 0.2 ${\mu}m$(p<0.05). Conclusions : The effects of bleaching on restorative materials were material dependent. It is necessary to consider the type of the material before starting the treatment.

Carbohydrate-electrolyte drinks exhibit risks for human enamel surface loss

  • de Melo, Mary Anne Sampaio;Passos, Vanara Florencio;Lima, Juliana Paiva Marques;Santiago, Sergio Lima;Rodrigues, Lidiany Karla Azevedo
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.246-254
    • /
    • 2016
  • Objectives: The aim of this investigation was to give insights into the impact of carbohydrate-electrolyte drinks on the likely capacity of enamel surface dissolution and the influence of human saliva exposure as a biological protective factor. Materials and Methods: The pH, titratable acidity (TA) to pH 7.0, and buffer capacity (${\beta}$) of common beverages ingested by patients under physical activity were analyzed. Then, we randomly distributed 50 specimens of human enamel into 5 groups. Processed and natural coconut water served as controls for testing three carbohydrate-electrolyte drinks. In all specimens, we measured surface microhardness (Knoop hardness numbers) and enamel loss (profilometry, ${\mu}m$) for baseline and after simulated intake cycling exposure model. We also prepared areas of specimens to be exposed to human saliva overnight prior to the simulated intake cycling exposure. The cycles were performed by alternated immersions in beverages and artificial saliva. ANOVA two-way and Tukey HDS tests were used. Results: The range of pH, TA, and ${\beta}$ were 2.85 - 4.81, 8.33 - 46.66 mM/L and 3.48 - $10.25mM/L{\times}pH$, respectively. The highest capacity of enamel surface dissolution was found for commercially available sports drinks for all variables. Single time human saliva exposure failed to significantly promote protective effect for the acidic attack of beverages. Conclusions: In this study, carbohydrate-electrolyte drinks usually consumed during endurance training may have a greater capacity of dissolution of enamel surface depending on their physicochemical proprieties associated with pH and titratable acidity.

Elemental analysis of caries-affected root dentin and artificially demineralized dentin

  • Sung, Young-Hye;Son, Ho-Hyun;Yi, Keewook;Chang, Juhea
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • Objectives: This study aimed to analyze the mineral composition of naturally- and artificially-produced caries-affected root dentin and to determine the elemental incorporation of resin-modified glass ionomer (RMGI) into the demineralized dentin. Materials and Methods: Box-formed cavities were prepared on buccal and lingual root surfaces of sound human premolars (n = 15). One cavity was exposed to a microbial caries model using a strain of Streptococcus mutans. The other cavity was subjected to a chemical model under pH cycling. Premolars and molars with root surface caries were used as a natural caries model (n = 15). Outer caries lesion was removed using a carbide bur and a hand excavator under a dyeing technique and restored with RMGI (FujiII LC, GC Corp.). The weight percentages of calcium (Ca), phosphate (P), and strontium (Sr) and the widths of demineralized dentin were determined by electron probe microanalysis and compared among the groups using ANOVA and Tukey test (p < 0.05). Results: There was a pattern of demineralization in all models, as visualized with scanning electron microscopy. Artificial models induced greater losses of Ca and P and larger widths of demineralized dentin than did a natural caries model (p < 0.05). Sr was diffused into the demineralized dentin layer from RMGI. Conclusions: Both microbial and chemical caries models produced similar patterns of mineral composition on the caries-affected dentin. However, the artificial lesions had a relatively larger extent of demineralization than did the natural lesions. RMGI was incorporated into the superficial layer of the caries-affected dentin.

IN VITRO STUDY ON CARIOGENIC POTENTIAL OF SYRUP-FORM MEDICINES FOR CHILDREN (어린이용 시럽제의 우식유발능에 대한 생체 외 연구)

  • Lim, Hwa-Shin;Lee, Kwang-Hee;La, Ji-Young;An, So-Youn;Kim, Yun-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.2
    • /
    • pp.146-154
    • /
    • 2011
  • An in vitro study on cariogenic potential of 8 over-the-counter syrups for children was performed. The experimental groups were 8 over-the-counter syrups. The positive control group was 10% sucrose solution, and the negative control group was artificial saliva. The pH of each group was determined. The buffering capacity was measured by the volume of 2 N NaOH adding to equalize the pH of 20 ml of experimental solution to pH 7. The consistency was measured by the time to pass Ostwald pipette for 2 ml of the experimental solution. The experimental solutions were inoculated with S. mutans and cultured in $37^{\circ}C$ anaerobic condition for 48 hours. To estimate acid production, pH of the experimental solutions were measured before and after the culture. The primary teeth specimens were soaked in the experimental solutions for 20 minutes three times a day. Except on those hours the specimens were stored in artificial saliva. After 5 days, the microhardness changes of the specimens were measured. These results show that most of syrup-form medicines for children tend to have cariogenic potential partially in endogenous pH, buffering capacity, consistency, acid production and erosive ability of enamel. For the oral health of children, the alternative sweeteners (ex. xylitol) may be substituted for the cariogenic sweeteners of syrups. Additionally, It may be helpful that the chewable tablet replace liquid or syrup in term of dose form.

Cariogenic Potential of Nutritional Supplements for Children on Bovine Teeth (Bovine teeth에 대한 어린이용 영양제의 우식유발능)

  • Heo, Narang;Lee, Kwanghee;An, Soyoun;Song, Jihyun;Ra, Jiyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.3
    • /
    • pp.233-240
    • /
    • 2014
  • An in vitro study on cariogenic potential of four over-the-counter nutritional supplements for children was performed. The experimental groups were four over-the-counter nutritional supplements. The positive control group was 10% sucrose solution (S), and the negative control group was artificial saliva (T). The pH of each group, the buffering capacities, acid production, the microhardness changes of the bovine teeth specimens were measured. The pH of all experimental groups were lower than critical pH 5.5 where enamel demineralization starts. The buffering capacity of the Hama Vitamin Pharm (Hamsoa Pharm Co., Korea) was highest, and the Smart Chewable Vitamin A (JW Pharm Co., Korea) had the lowest buffering capacity. The reduction rates of the pH of the experimental groups were significantly higher than that of the negative control group (p < 0.05). The microhardness of enamel of all experimental groups and the positive control group significantly decreased. In contrast, the microhardness of enamel of the negative control group significantly increased after experiment (p < 0.05). The reduction rate of the microhardness of enamel of the Hama Vitamin Pharm (Hamsoa Pharm Co., Korea) was significantly higher and Hikid Plus (Sanga Pharm Co., Korea) was significantly lower than the other experimental groups.

The effects of bamboo salt solution on remineralization of artificial caries-like lesions (죽염이 초기인공우식법랑질의 재광화에 미치는 영향)

  • Oh, Han-Na;Hong, Suk-Jin;Lee, Hye-Jin;Choi, Choong-Ho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.2
    • /
    • pp.335-343
    • /
    • 2012
  • Objectives : The aim of this investigation was to evaluate the remineralization effect of Bamboo salt and NaF+Bamboo salt solutions on bovine enamel formed incipient artificial enamel caries by microcomputed tomography (micro CT). Methods : Experimental solutions were distilled water(negative control), 2% sodium fluoride solution (2% NaF group), 3% bamboo salt solution (3% BS group) and the solution mixed 2% sodium fluoride solution and 3% bamboo salt solution (2% NaF+3% BS group). Specimens were prepared from extracted bovine teeth and divided into 4 groups of 10 specimens each by randomized blocks according to density. Then the specimens surface were divided equally into three parts to observe sound enamel area, incipient enamel carious area and remineralized enamel area. Only one-third of specimen surface was coated with nail varnish and these were exposed to a lactate carbopol buffer system for 72 hours. Then one-half of the demineralized enamel area was coated with nail varnish. The specimens were carried out under pH cycling model for 14 days as follows; samples were immersed in each experimental solution for 2 mins 3 times per day, demineralized for 4 hours and in mixed saliva for the remaining hours. After pH cycling, density was measured using micro CT. Results : All experimental groups showed remineralization effects except for negative control group(p<0.05). The differences of density after experimental solution treatment were statistically significant difference among 4 groups (p<0.01). The density difference values of groups were $0.04{\pm}0.01$ in negative control group, $0.19{\pm}0.01$ in 2% NaF group, $0.14{\pm}0.01$ in 3% BS group, and $0.21{\pm}0.01$ in 2% NaF+3% BS group. Conclusions : The bamboo salt solution showed remineralization effects on incipient artificial enamel caries and the solution mixed sodium fluoride solution and bamboo salt solution showed more remineralization effects than the bamboo salt solution. Thus, it is suggested that bamboo salt can be used as remineralization agent in incipient enamel caries lesion.

Resin infiltrant protects deproteinized dentin against erosive and abrasive wear

  • Ana Theresa Queiroz de Albuquerque;Bruna Oliveira Bezerra;Isabelly de Carvalho Leal;Maria Denise Rodrigues de Moraes;Mary Anne S. Melo;Vanara Florencio Passos
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.3
    • /
    • pp.29.1-29.10
    • /
    • 2022
  • Objectives: This study aimed to investigate the anti-erosive/abrasive effect of resin infiltration of previous deproteinized dentin. Materials and Methods: Dentin slabs were randomly assigned to 3 groups (n = 15): Control (no deproteinization; no resin infiltrant applied), RI (no deproteinization; resin infiltrant applied), and DRI (deproteinization; resin infiltrant applied). After undergoing the assigned treatment, all slabs were subjected to an in vitro cycling model for 5 days. The specimens were immersed in citric acid (0.05 M, pH = 3.75; 60 seconds; 3 times/day) and brushed (150 strokes). Between the challenges, the specimens were exposed to a remineralizing solution (60 minutes). The morphological alterations were analyzed by mechanical profilometry (㎛) and scanning electron microscopy (SEM). Data were submitted to one-way analysis of variance (ANOVA) and Tukey tests (p < 0.05). Results: Control and RI groups presented mineral wear and did not significantly differ from each other (p = 0.063). DRI maintained a protective layer preserving the dentin (p < 0.001). After erosive/abrasive cycles, it was observed that in group RI, only 25% of the slabs partially evidenced the presence of the infiltrating, while, in the DRI group, 80% of the slabs presented the treated surface entirely covered by a resin-component layer protecting the dentin surface as observed in SEM images. Conclusions: The removal of the organic content allows the resin infiltrant to efficiently protect the dentin surface against erosive/abrasive lesions.

Seasonal Nutrient Analysis of Paddy Soils in Korean Type of Large Scale Environment-friendly Agricultural District (한국형 광역친환경 논 농업단지 토양의 시기별 양분 분석)

  • Choi, Hyun-Sug;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.373-386
    • /
    • 2017
  • The study was conducted to investigate seasonal nutrient dynamics in rice-cultivated soils collected from farmhouses of three large-scale environment-friendly agricultural districts (LEAD), Jangheung, Suncheon, and Okcheon in which environmental-friendly agriculture has been exemplarily practiced in Korea. Among three districts, Crop- livestock cycling organic farming system had been introduced only in Jangheung. pH and EC of farmhouse soils of three LEADs were ranged between 5.5 - 6.7 and $0.4-1.0dS\;m^{-1}$ from March to September, respectively. T-N was observed to be high on the farmhouse soil in Suncheon and K was observed to be lowest on farmhouse soil in Okcheon. Concentration of $NH_4-N$ in soil was observed to be highest on June, in particular on the farmhouse in Jangheung, but rapidly decreased due to the loss of fertilizer applied in Spring. Yield and harvest index were the highest on the farmhouse in Okcheon in which total annual gross production $ha^{-1}$ was nearly three time higher than those of other two farmhouses. Farmhouse soil of Okcheon was maintained the highest seasonal nutrient balance due to the high input of fertilizer. It was estimated that K balance in the farmhouse soil in Suncheon dropped to $-60kg\;ha^{-1}$ on September, and it might have some effect on the less rice productivity due to K deficiency. Farmhouse soil in Jangheung was maintained low seasonal balance of T-N and P but showed the highest N use efficiency in the rice grain. Based on above-mentioned results, we think Jangheung farmhouse can be recommended as a model farmhouse of LEADs.