• Title/Summary/Keyword: pH conditions

Search Result 6,342, Processing Time 0.039 seconds

The Comparative Study on Decoctions of Ssanghwa-tang(Shuanghe-tang) Extracted by Different Extraction Conditions (전탕 조건에 따른 쌍화탕 전탕액 비교 연구)

  • Kim, Jung-Hoon;Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Herbal Formula Science
    • /
    • v.18 no.2
    • /
    • pp.125-134
    • /
    • 2010
  • Objectives : This study was performed to compare the differences between decoctions extracted by different extraction conditions. Methods : Two different decoctions were prepared with pressured or non-pressured extraction conditions for 60, 120 and 180min. The yields of extracts, sugar contents, hydrogen ion concentrations(pH), the contents of reference compounds and individual preferences on Ssanghwa-tang(Shuanghe-tang) were investigated. Results : As extraction time increased, individual preferences for decoctions by pressured extraction tended to increase more than those by non-pressured extraction, and the yields and sugar contents of both decoctions showed the tendency of increase. The pH values of decoctions in pressured conditions were lower than those in non-pressured conditions in all extraction times and both extraction conditions showed decreasing pH values according to increase of extraction times. Of the reference compounds, paeoniflorin showed higher contents in non-pressured conditions than in pressured conditions and the contents of cinnamaldehyde were always lower in non-pressured conditions than in pressured conditions at all time. Conclusions : The decoctions of Ssanghwa-tang(Shuanghe-tang) extracted by pressured or non-pressured extraction for 60, 120, 180min exhibited different individual preferences, yields of extracts, sugar contents, pH, reference compounds contents.

Decrease of Intracellular pH and Activation of $Na^+-H^+$ Exchanger by Fluid Pressure in Rat Ventricular Myocytes (유체 압력에 의한 흰쥐 심실근세포 pH의 감소 및 $Na^+-H^+$ 교환체의 활성화)

  • Kim, Joon-Chul;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.247-250
    • /
    • 2011
  • An increase in ventricular pressure can alter cardiac excitation and contraction. Recent report has demonstrated that fluid pressure (FP) suppresses L-type $Ca^{2+}$ current with acceleration of the current inactivation in ventricular myocytes. Since the L-type $Ca^{2+}$ channels known to be regulated by intracellular pH ($pH_i$), this study was designed to explore whether pressurized fluid flow affects pHi in isolated rat ventricular myocytes. A flow of pressurized (~16 dyne/$cm^2$) fluid, identical to that bathing the myocytes, was applied onto single myocytes, and intracellular $H^+$ concentration was monitored using confocal $H^+$ imaging. FP significantly decreased $pH_i$ by $0.07{\pm}0.01$ pH units (n=16, P<0.01). Intracellular acidosis enhances the activity of $Na^+-H^+$ exchanger (NHE). Therefore, we examined if the NHE activity is increased by FP using the NHE inhibitor, HOE642. Although HOE642 did not alter $pH_i$ in control conditions, it decreased $pH_i$ in cells pre-exposed to FP, suggesting enhancement of NHE activity by FP. In addition, FP-induced intracellular acidosis was larger in cells pre-treated with HOE642 than in cells under the control conditions. These results suggest that FP induces intracellular acidosis and that NHE may contribute to extrude $H^+$ during the FP-induced acidosis in rat ventricular myocytes.

A Study of the Growth Condition and Solubilization of Phosphate from Hydroxyapatite by Pantoea agglomeraus

  • Il Jung;Park, Don-Hee;Park, Kyungmoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.201-205
    • /
    • 2002
  • The growth conditions of Pantoea aggicmerans, a phosphate solubilizing organism, were studied In our laboratory to determine the optimal conditions. Pantoea aggionerans showed the highest growth rate at 30$\^{C}$, pH 7.0 and 2 vvm, after 50 h cultivation. A certain relationship between pH and phosphate concentration was evident when the glucose concentration in the me dium was changed. Increasing glucose concentration increased the pH buffer action of the broth. At glucose concentrations higher than the optimum concentration of 0.2 M, the cell growth was retarded. P. agglomerans consumed glucose as a substrate to produce organic acids which caused the pH decrease in the culture medium. The phosphate concentration in the medium was increased by the presence of the organic acids, which solubilized insoluble phosphates such as hydroxyapa-tite.

Leaching Characteristics of Heavy Metals of Bottom Ash and Plating Sludge with Environmental Conditions in Landfill (매립지 환경조건을 고려한 소각재와 도금슬러지의 중금속 용출특성)

  • 손희정;김은호;이용희
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.121-127
    • /
    • 1998
  • This study was to understand leaching characteristics with pH controlling agents and Temp. control, and investigate leaching characteristics with pH control from opening a leaching test to an end for reassessing leaching test of heavy metals with environmental conditions in landfill. Because leaching of heavy metals was increased in low pH, pH must control for leaching in existing leaching test. Generally, regulation time(6hr) of leaching was confirmed reasonablely, except for Cu in plating sludge. In pH controlling solution, there was nearly not difference between Acetic acid and HCl and if considering Cu, the former was appropriate. In a part of heavy metal, leaching rate was increased in high Temp., and normal Temp. in existing leaching test would be revaluated.

  • PDF

Separation of water-soluble egg yolk proteins using polysaccharide (다당류를 이용한 수용성 난황 단백질의 분리)

  • Moon, Tae-Wha;Lee, Hyun-Jong
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.296-303
    • /
    • 1993
  • Response surface methodology was employed to investigate the conditions for separating water-soluble proteins from egg yolk using sodium alginate, propylene glycol alginate (PGA), sodium carboxymethylcellulose (CMC) and pectin which are approved as food additives. Effects of plysaccharide concentration and pH of the reaction system on protein and lipid contents in the supernatant were evaluated at respectively five and three levels of concentration and pH using rotatable hexagon design. Statistical analysis showed that pH of the system was a more important factor than polysaccharide concentration as it significantly affected all two responses. Separating conditions established by a graphical optimization technique were $0.23{\sim}0.25%$ of sodium alginate at $pH\;5.9{\sim}6.0$, $0.15{\sim}0.17%$ of PGA at $pH\;4.3{\sim}4.5$, $0.30{\sim}0.25%$ of CMC at pH 3.0, and $0.09{\sim}0.10%$ of pectin at $pH\;5.6{\sim}5.8%$.

  • PDF

DNA Microarrav Analysis on Saccharomyces cerevisiae under High Carbon Dioxide Concentration in Fermentation Process

  • Nagahisa, Keisuke;Nakajima, Toshiharu;Yoshikawa, Katsunori;Hirasawa, Takashi;Katakura, Yoshio;Furusawa, Chikara;Shioya, Suteaki;Shimizu, Hiroshi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.451-461
    • /
    • 2005
  • The effect of carbon dioxide on yeast growth was investigated during the cultivation of pH 5.0 and pH 6.8. by replacing the nitrogen part with carbon dioxide under aerobic conditions. The values of the specific growth rate under pH 5.0 and pH 6.8 conditions became 64.0% and 46.9%, respectively, compared to those before the change in gas composition. This suggests that the effect of carton dioxide was greater pronounced in pH 6.8 than in pH 5.0. The genome-wide transcriptional response to elevated carbon dioxide was examined using a DNA microarray. As for upregulated genes, it was noteworthy that 3 genes were induced upon entry into a stationary phase and 6 genes were involved in stress response. Of 53 downregulated genes, 22 genes were involved in the ribosomal biogenesis and assembly and 5 genes were involved in the lipid metabolism. These facts suggest that carbon dioxide could bring the cell conditions partially to a stationary phase. The ALD6 gene encoding for cytosolic acetaldehyde dehydrogenase was downregulated, which would lead to a lack of cell components for the growth. The downregulation of ALD6 was greater in pH 6.8 than in pH 5.0. consistent with physiological response. This suggests that it might be the most effective factor for growth inhibition.

Variation of the Nanostructural and Optical Features of Porous Silicon with pH Conditions (pH 조건에 따른 기공성 실리콘의 나노구조 및 광학적 특성의 변화)

  • Kim, Hyo-Han;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • The effect of chemical treatments of porous silicon in organic solvents on its nanostructural and optical features was investigated. When the porous Si was dipped in the organic solvent with various PH values, the morphological, chemical, and structural properties of the porous silicon was sensitively affected by the chemical conditions of the solvents. The size of silicon nanocrystallites in the porous silicon decreased from 5.4 to 3.1 nm with increasing pH values from 1 to 14. After the samples were dipped in the organic solvents, the Si-O-H bonding intensity was increased while that of Si-H bonding decreased. Photoluminescence peaks shifted to a shorter wavelength region in the range of 583 to 735 nm as the pH value increased. PL intensity was affected by the size as well as the volume fraction of the nanocrystalline silicon in the porous silicon.

Prediction of optimum pH of hydrolases

  • Sung, Nak-Gyu;Yoo, Young-Je
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • Hydrolase is a group of the most widely used enzymes in industrial biological processes. Generally, their activities are easily changed with pH. With this characteristics, research for the optimal pH of hydrolases is required to obtain the optimization of process conditions. We selected xylanase, lysozyme, glucoamylase and barnase as model enzymes. To predict optimum pH of hydrolases, the calculation program based on Tanford-Kirkwood(TK) model was used. Results show that charge difference of catalytic residues is an important parameter deciding optimum pH and when charge difference of catalytic residues is maximum, optimum pH of the hydrolase establishes.

  • PDF

Physical Property and Stability of Liposome Prepared from Egg Yolk Phospholipids at Various Storage Conditions (난황 유래 인지철로 합성한 리포좀의 물리적 특성과 안정성)

  • Park, Sun-Hyun;Kim, Myung-Hee
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.549-554
    • /
    • 2008
  • Liposomes were prepared from egg yolk phospholipids to study their physical properties and stability at various storage conditions. Under storage conditions at different pH levels, the particle sizes of liposomes increased at the range of pH 1-2, and the absolute values of $\xi$-potentials were reduced at the range of pH 1-4. The leakage of sulforhodamine B (SRB), a fluorescent dye which is encapsulated in the liposome, increased greatly at pH 2-4. At different storage temperatures, the particle size of liposomes increased from the 10 days of storage at $4^{\circ}C$ and the 40 days at 20 and $35^{\circ}C$. The $\xi$-potentials decreased slightly later during storage under 4, 20 and $35^{\circ}C$. At the storage temperature of $50^{\circ}C$, the leakage of SRB was the greatest. Therefore, we concluded that the pH conditions lower than pH 6 and high temperature of $50^{\circ}C$ are not conducive to storing liposomes. The results obtained here may prove helpful in developing liposome-based encapsulation and diagnostic reagents.

Redox Reaction on Polarization Curve Variations of Polymer with Enzymes

  • Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.165-171
    • /
    • 2000
  • Experiments were carried out to measure variations in the oxidation potential and current density using the polarization curves of polycarbonate. The results were then examined to identify the influences affecting the oxidation potential related to various conditions, such as temperature, pH, and oxydase(citrate and lipase). The lines representing the active anodic and cathodic dissolution shifted only slightly in the potential direction relative to temperature, pH, and the effect of the enzyme. The Tafel slope for the anodic and cathodic dissolution was determined such that the reversibility polarization was indicated as being effected by various conditions. The slope of the polarization curves describing the active-to-passive transition region shifted noticeably in their direction. Also, by varying the conditions, the optimum conditions for the most ready transform were identified, including temperature, pH, oxidation rate, and resistance of oxidation potential. The critical oxidation sensitivity(I(sub)r/I(sub)f) of the anodic current density peak and maximum passive current density was also determined, which is used in measuring the critical corrosion sensitivity of a polycarbonate.

  • PDF