• Title/Summary/Keyword: pH 전환

Search Result 552, Processing Time 0.037 seconds

Expression of Clostridium thermocellum Endoglucanase Gene in Lactobacillus bulgaricus and Lactobacillus plantarum and in vitro Survival Characteristics of the Transformed Lactobacilli (Lactobacillus bulgaricus와 Lactobacillus plantarum 균주에서 Clostridium thermocellum 유래 endoglucanase의 발현과 발현 유산균의 in vitro 생존 특성)

  • Cho, J.S.;Kang, S.H.;Lee, H.G.;Lee, H.J.;Woo, J.H.;Moon, Y.S.;Yang, C.J.;Choi, Y.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.659-666
    • /
    • 2003
  • Endoglucanase A from Clostridium thermocellum which is resistant to pancreatic proteinase was selected out of numbers cellulases then were expressed in lactobacilli. Recombinant lactobacilli expression vector, pSD1, harboring the endoglucanase gene from C. thermocellum under the control of its own promoter, was constructed. Both L. bulgaricus and L. plantarum were electrotransformed with pSD1. The endoglucanase activities of 0.120 and 0.144 U/ml were found in culture media of L. bulgaricus and L. plantarum containing pSD1, respectively. In vitro survival characteristics of the transformed lactobacilli were tested. Both L. bulgaricus and L. plantarum showed a similar resistance to low pH 3. Moreover, L. plantarum was bile-salt resistant in the presence of 0.3 and 1% oxgall. L. bulgaricus and L. plantarum showed a rather homogenous resistant pattern against the tested antibiotics. Both of the strains were resistant to amikacin, gentamicin, streptomycin, kanamycin, and colistin.

Genesis and Mineralogical Characteristics of Acid Sulfate Soil in Gimhae Plain -I. Transformation of Pyrite and Jarosite (김해평야(金海平野)에 분포(分布)한 특이산성토(特異酸性土)의 생성(生成)과 광물학적(鑛物學的) 특성(特性) -I. Pyrite와 Jarosite의 생성(生成))

  • Jung, Pil-Kyun;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.204-214
    • /
    • 1993
  • The purpose of this study was to elucidate the chemical changes and formation of sulfur minerals following reduction and subsequent oxidation of the acid sulfate soils derived from the fluvio-marine plains in Gimhae area. Changes in pH, Eh and water soluble $SO_4$, Fe, Al, K, na and Ca were determined in the soil under the reduced and oxidized conditions. These chemical properties were related to the formation of the pyrite and jarosite, the major sulfur minerals in the acid sulfate soils. On incubation, suspension pH tended to increase with decreaseing Eh in the reduction periods. Jarosite formation was favored by maintaining continuous low pH(below 4.0) and high Eh(above 400mV) during the oxidation periods, however, the conditions were not favorable for the soils with $Ca(OH)_2$. Water soluble K increased by reduction but decreased by oxidation, while the jarosite of the soil with $Ca(OH)_2$ was dissolved even under the oxidation conditon, resulting in rapid increase of water soluble K. The water soluble Ca decreased rapidly, indicating that gypsum was formed with $Ca(OH)_2$ during the oxidation periods. The formation of jarosite was favored by the oxidation condition, and hindered by the reduction condition. But the formation of pyrite was favored by reduction and hindered by oxidation. When the troll was treated with $Ca(OH)_2$, Jarosite was dissolved in both oxidized and reduced conditions.

  • PDF

Characteristics of Lotus and Lance Asia bell as Ingredients of Kimchi (김치원료로서 연근과 더덕의 절임특성 연구)

  • Cho, Jung-Eun;Yoo, Ga-Young;Lee, Mi-Ai;Chung, Young-Bae;Yang, Ji-Hee;Han, Eung-Soo;Seo, Hye-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1144-1150
    • /
    • 2012
  • The study of quality and salting characteristics of root vegetables other than Chinese cabbage was done to develop different kinds of Kimchi. The root vegetables lotus (Nelumbo nucifera) and lance Asia bell (Codonopsis lanceolata) were evaluated as main ingredients for Kimchi by measuring their physico-chemical and microbial properties. Salinity, pH, titratable acidity, reducing sugar, firmness, color change, moisture content, total viable counts, and lactic acid bacteria were investigated to identify adaptability for Kimchi. The initial pH of lotus and lance Asia bell showed 5.7 to 6.3 during the salting period, and the pH decreased with increasing salting periods. The reducing sugar contents of lance Asia bell showed 34.1 to 35.6 mg/g, which were significantly higher compared to lotus 3.2 to 3.4 mg/g. Titratable acidity also showed higher in salted lance Asia bell at 0.36 to 0.4%, while lotus showed 0.17 to 0.27%. Lactic acid producing bacteria increased in lance Asia bell during salting periods and reached $2.1{\times}10^4CFU/g$ after 48 hr of salting. However, no lactic acid bacteria were detected in lotus. As a result of this physico-chemical and microbial analysis, lance Asia bell was more suitable as an ingredient of Kimchi than lotus.

Molecular Cloning and Expression of a Cellulolytic Xylanase Gene from Bacillus circulans in Escherichia coli (Bacillus circulans 기원의 Cellulolytic Xylanase 유전자의 대장균에서의 클로닝 및 발현)

  • 이동석;김지연;김한복
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.196-202
    • /
    • 2000
  • A gene for cellulolytic xylanase of Bacillus circulnns ATCC21365 was cloned on pUC 19 in Eschwichia coli. The recombinant plasniid pXLI80 contained an 1.8 id, inselt composed of0.5 kb and 1.3 kb PslI fragments derived from B, circulans. The 0.5 kh fragment in the upstream region of 1.3 kb one was confirmed lo be indispensable for not only expression but also hyperexpression of the cloned gene. The transformant overproduced the xylanase 135 times greater than that produced by the orlginal B circulnns. The optimum pH and temperature of the cloned enzyme we]-e pH 5.2 and $60^{\circ}C$, respectively. Heal pretl-eatment at TEX>$55^{\circ}C$C for 1 Indid not cause inhibition of the activity of this enzyme. The elm.ynie could hydl-olyre CMC and lichenan as well as xylan to produce xylose(or GI), xylohiose(or G2) and xylolnose(or G3) as inah products. Hence We defined the cloned enzyme as a cellulolytic xylanase. The SDS-PAG electrophoretic mobility and zyiiogram of this enzyme derived from whole cell extracts or c~~lture supematants or E. coli(pXL180) indicated a molecular weight of 45,000 and nonprocessing of the enzyme in the peilplasln of E. coli.

  • PDF

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF

Changes in Microbial and Physicochemical Properties of Single-Brewed Makgeolli by High Hydrostatic Pressure Treatment during Fermentation (단양주 방법으로 제조된 막걸리의 발효과정 중 초고압 처리에 의한 미생물적 및 이화학적 특성 변화)

  • Ha, Su-Jeong;Yang, Seung-Kuk;In, Ye-Won;Kim, Yun-Ji;Oh, Se-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1176-1181
    • /
    • 2012
  • This study was conducted to examine changes in the microbial and physicochemical properties of single-brewed Makgeolli in response to high hydrostatic pressure (HHP) treatment during various fermentation stages. HHP was applied in 2-day intervals at 400 MPa for 5 min during fermentation at $25^{\circ}C$. As a result, lactic acid bacteria showed 5~6 log reduction and reappeared at approximately 3~6 log cfu/mL as fermentation proceeded. Yeast also showed 5~6 log reduction but did not reappear during later fermentation period. HPP treatment did not result in any alcohol production on day 0 and 2. However, HPP treatment altered the pH and titratable acidity by reducing the number of microorganism. Reducing sugar contents of the samples increased continuously to 8.99% in 0 day treated sample and 5.01% in 2 day treated sample, whereas untreated Makgeolli contained 1.53% reducing sugars on 6 day due to alcohol conversion by yeast. Based on these results, HPP treatment during various fermentation stages altered the physicochemical properties of Makgeolli by changing the microbial community.

Transformation of Potato using the Phosphinothricin Acetyltransferase Gene as the Selectable Marker Gene (감자의 형질전환을 위한 표지유전자로서 Phosphinothricin Acetyltransferase 유전자의 이용)

  • Jeong, J.H.;Yang, D.C.;Bang, K.S.;Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.205-213
    • /
    • 1998
  • This experiment was carried out to produce herbicide resistant potatoes hawing only chimeric phosphinothricin acetyltransferase (PAT) genes without using antibiotic selectable marker. The pDY502 vector having only PAT gene was reconstructed for transformation of potato. The reconstructed vector was introduced to Agrobacterium tumefaciens MP90 disarmed, and they were used for potato transformation. Hormonal requirement for plant regeneration from leaves and stem explants of potato was investigated. From this experiment, MS medium treated with IBA 0.1 mg/L + BA 0.5 mg/L was the best for potato regeneration, and the ratio of shoot regeneration was 54% for leaf and 46% for stem in that condition. For transformation, explants of potato leaves and stems were cocultured with A. tumefaciens MP90 containing reconstructed vector harvoring only PAT gene. When the potato explants were placed on various concentrations of bialaphos and all the potato explants were dead on medium with over 5.0mg/L bialaphos. By this selection methods, the explants cocultured with Agrobacterium produced the putative transgenic shoots on medium with 5mg/L bialaphos treatment after 3-4 weeks. Second selection was performed by transferring the shoot tips of putative transgenic to medium containing 20mg/L of bialaphos. The shoot tips grew well on the second selection medium, indicating the production of successful transgenic plants. But normal shoots were dead in same cytotoxic medium. Incorporation of the PAT gene into transgenic potatos were confirmed by PCR analysis of DNA and Southern hybridization. These results show that the PAT gene can serve as a selectable marker and herbicide resistant genes for transformation of potato.

  • PDF

Optimization of Xylitol Production by Candida tropicalis in Two-stage Fed-batch Culture (Candida tropicalis의 2단계 유가식 배양에 의한 Xylitol 생산의 최적화)

  • 유연우;조영일;서진호
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.93-99
    • /
    • 2002
  • Two-stage fed-batch culture of Candide tropicalis that was designated primarily to cultivate the cell in the glucose medium (1st stage) and then produced the xylitol from xylose medium (2nd stage) was developed to improve a xylitol yield and productivity. In the growth stage, glucose was automatically supplied to the fermentor by pH-stat mode when the pH was up 5.7, When a feeding medium was added in order to reach the glucose and yeast extract concentrations up to 100 and 40 g/L, respectively, a high cell concentration and a relatively low ethanol concentration were obtained in 18.5 h culture. In the production stage, initial xylose concentration of 150 g/L was the most favorable for obtaining the final xylitol concentration and productivity. The addition of mineral salts was also enhanced a xylitol production. But the aeration rate was not significantly affected a xylitol production. When the addition of 16 g yeast extract and 232.5 g xylose powder at the production stage was used, xylitol yield and productivity were significantly increased. With these conditions, xylitol concentration, yield and productivity of 108.9 g/L, 74%) and 3.3 g/L·h, respectively, were obtained in a final volume of 1.58 L. The further addition of 16 g yeast extract and 232.5 g xylose powder increased the working volume partly (1.67 L) and resulted in a relatively high xylitol concentration, yield and productivity of 193 g/L, 70% and 3.6 g/L·h, respectively.

Cloning and Expression of A Liquefying $\alpha$-Amylase Gene from Bacillus amyloliquefaciens in Bacillus subtilis (Bacillus amyloliquefaciens 액화형 $\alpha$-amylase 유전자의 클로닝 및 Bacillus subtilis에서의 발현)

  • 김사열;송방호;이인구;서정환;홍순덕
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.479-485
    • /
    • 1986
  • A 5200 basepair DNA fragment containing the Bacillus amyloliquefaciens amyE gene, encoding liquefying $\alpha$-amylase (1,4-$\alpha$-1)-glucan glucanohydrolase, EC 3.2.1.1), has been inserted into BamHI site of the pUB110 and the hybrid plasmid was designated as pSKS3. The pSKS3 was transformed into the Bacillus subtilis KM2l3 as a host which is a saccharifying $\alpha$-amylase deficient mutant of Bacillus subtilis NA64, and the plasmid in the transformed cell was expressed $\alpha$-amylase production and kanamycin resistance. The $\alpha$-amylase production of the transformed cell was reduced to one fifth of that of the donor strain. The Bacillus subtilis KM2l3 tarring pSKS3 indicated that the amyE gene product is a polypeptide which has the same electrophoretic mobility with that of the Bacillus amyloliquefaciens, but different from the saccharifying $\alpha$-amylase of Bacillus subtilis NA64. It means that the amyE gene of pSKS3 originales from the Bacillus amyloliquefaciens.

  • PDF

Characteristics of Heavy Metal Resistant Plasmid in Enterobacter cloaceae K41 (Enterobacter cloaceae K41 plasmid의 중금속 저항성)

  • Kim Young-Hee;Lee Sang-Jun;Jeong Yong-Kee;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.566-571
    • /
    • 2005
  • A natural habitat bacterium, Enterobacter cloaceae K41 was isolated from fresh water plant root and identified. This strain was used to investigate heavy metal resistance. The optimal growth conditions of the bacterium were LB medium containing$1\%$ yeast extract, $1\%$ lactose, $1\%$ NaCl, pH 7.0, at $37^{\circ}C$, and for 24 hours on a shaker. The minimal inhibitory concentration (MIC) of heavy metals against E. cloaceae KCTC2519 and E. cloaceae K41 was compared. The MIC of E. cloaceae K41 was 150 ppm in Cu, 50 ppm in Cd whereas that of the standard strain was 50 ppm in Cu but no growth was observed either Cd or two mixed heavy metal solution. The presence of plasmid was cleared from the isolated strain whereas no possession from the standard strain. The plasmid from E. cloaceae K41 was transformed into E. coli $DH5{\alpha}$. The MIC of transformed strain increased resistance 7 times in Cu and 6 times in Cd by insertion of this plasmid. The metal adsorption of the transformant was increased 1.3 times in Cu and 1.5 times in Cd indicating the plasmid was responsible for heavy metal resistance.