• 제목/요약/키워드: pH 전환

검색결과 553건 처리시간 0.032초

영국의 상호접속제도 동향 및 최근 이슈 분석 (The Recent Interconnection Policy and Current Issues in UK)

  • 정충영;변재호;김방룡
    • 전자통신동향분석
    • /
    • 제15권3호통권63호
    • /
    • pp.62-72
    • /
    • 2000
  • 영국은 그동안 사업자간 협상에 맡겨 두었던 고정망에서 이동망으로의 호에 대한 접속료 정산체제를 원가주의로 전환함으로써 이동망에 대한 규제에 있어서 큰 변화를 불러 일으켰다. 또한 광대역서비스에 대한 접속의 필요성이 급증함에 따라 그동안 가입자회선 세분화에 대해 부정적인 입장을 취하고 있던 OFTEL은 점차 가입자회선 세분화의 필요성을 인식하여 이에 대한 규제를 추진중에 있다. 본 고에서는 최근까지의 영국의 상호접속제도 변천과정을 살펴보고 최근의 주요 이슈에 대해 면밀히 검토해 보고자 한다.

콘크리트 사육수조에서 향어(Cyprinus carpio)의 성장 및 수질에 미치는 자외선-오존 램프의 영향

  • 이정열;김경환;성용식;류경남;하만수
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2001년도 춘계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.352-353
    • /
    • 2001
  • 오존(O$_3$)은 강력한 산화력 및 극히 짧은 반감기, 잔류오존의 순간적 산소로 전환 등의 성질이 있어 수중 유기물질의 산화분해, 탈색 및 탈취, 소독을 위해 수(水)처리 분야에서 많이 이용되고 있고, 자외선은 대상물질의 pH, 색상 맛, 냄새, 온도 등을 변화시키지 않고 세균을 죽일 수 있는 살균제로 오래 전부터 식품 및 의학분야에서 널리 응용되어 오고 있다. (중략)

  • PDF

Bacillus licheniformis 포도당 이성화 효소 유전자의 Excherichia coli에 발현 (Expression of Glucose Isomerase Gene from Bacillus licheniformis in Escherichia coli.)

  • 신명교;고영희
    • 미생물학회지
    • /
    • 제23권2호
    • /
    • pp.138-146
    • /
    • 1985
  • 포도당 이성화효소를 coding는 Bacillus licheniformis ATCC31667의 유전자를 Escherichia coli LE 392-6에 클로닝하였다. Bacillus lieheniformis 염색체 DNA를 분리하고 제한효소인 Pst I.HindIII, Sal 1, EcoR 1, BamH1으로 절단한 후 운반제 plasmid인 pBR332에 연결하고 포도당 이성화효소 negative인 E. coli LE 3926-6에 형질전환하였다. 이중 E채꺄 제한효소를 사용한 것만이 glucose isomerase positive로 전환되어 xylose를 유일 탄소원으로 하여 성장하였다. 이 제조합 plasmid를 제한효소로 처리하여 본 결과 4.1Kb의 Bacillus licheniformisdb전자가 옮겨 졌음을 확인했고 여기에 제한효소 HindII와 Puv II의 절단위치가 확인되어 제한요소 지도를 작정하였다. 이 재조합 plasmid pBGI6는 연속계대 10일 후에도 매우안정하게 유지되었다. 한편 포도당 이정화 효소의 안정을 측정하여 본 바 야생숙주에 비해 약 20배의 증가를 나타냈다.

  • PDF

Enterobacter sp. YB-46의 myo-Inositol dehydrogenase 유전자 클로닝과 특성분석 (Molecular Cloning and Characterization of myo-Inositol Dehydrogenase from Enterobacter sp. YB-46)

  • 박찬영;김광규;윤기홍
    • 한국미생물·생명공학회지
    • /
    • 제46권2호
    • /
    • pp.102-110
    • /
    • 2018
  • myo-Inositol (MI)을 대사하여 다른 물질로 전환하는 미생물을 과수원 토양으로부터 분리하였다. 분리균 YB-46은 유일한 탄소원으로 MI이 첨가된 배지에서 성장하였고 16S rDNA 염기서열에 따라 Enterobacter 속의 균주로 추정되었다. Fosmid pCC1FOS 벡터를 사용하여 제조된 거대 유전체 은행으로부터 MI을 미지의 대사 물질로 전환하는 Escherichia coli 형질전환주를 선발하였다. 이로부터 플라스미드를 분리하고 삽입된 유전자의 일부 염기서열을 결정한 결과 336 아미노 잔기로 구성된 myo-inositol dehytrogenase (IolG)를 암호화하는 iolG 유전자가 발견되었다. 분리균 YB-46의 IolG는 E. aerogenes와 Bacillus subtilis의 IolG와 약 50% 수준의 상동성을 보였다. 카르복실 말단에 hexahistidine이 연결되도록 제조한 His-tagged IoG (HtIolG)의 유전자를 재조합 대장균에서 발현하여 균체 파쇄액으로부터 HtIolG를 정제하였다. 정제된 HtIolG는 $45^{\circ}C$와 pH 10.5에서 최대 활성을 보였고 MI과 D-glucose에 대한 활성이 가장 높았으며 D-chiro-inositol, D-mannitol 및 D-xylose에도 90% 이상의 활성을 보였다. 최적 반응조건에서 MI을 기질로 하여 반응 동력학적 계수를 측정한 결과 $K_m$$V_{max}$가 1.83 mM과 $0.724{\mu}mol/min/mg$로 확인되었다. HtIolG의 활성은 $Zn^{2+}$에 의해 1.7배 증가하였으며, $Co^{2+}$와 SDS에 의해서는 크게 감소하였다.

Keggin형 헤테로폴리산에 의한 과당의 5-하이드록시메틸퍼퓨랄로의 전환을 위한 탈수반응 (Dehydration Reaction of Fructose to 5-Hydroxymethylfurfural over Various Keggin-type Heteropolyacids)

  • 백자연;윤형진;김남동;최영보;이종협
    • 청정기술
    • /
    • 제16권3호
    • /
    • pp.220-228
    • /
    • 2010
  • 과당(fructose)로부터 간단한 공정을 통하여 바이오디젤보다 우수한 청정에너지 연료로 알려진 5-하이드록시메틸퍼퓨랄(HMF)을 제조하는 청정공정을 개발하였다. 이 연구에서는 중심원소와 배위원소가 치환된 네 종류의 헤테로폴리산 $H_nXM_{12}O_{40}$ (중심원소 X = P, Si, 배위원소 M = W, Mo.)을 과당으로부터 HMF로 전환하는 탈수반응에 적용하고, 그 반응활성을 비교하였다. 헤테로폴리산의 산 세기는 중심원소가 P, 배위원소가 W일 때 더 높았으며 산 점의 수는 이와 반대되는 경향을 보였다. 과당의 HMF로의 탈수반응은 헤테로폴리산의 산 특성과 음이온의 연성(softness)과 밀접한 관련이 있으며, 촉매 활성점과 전환율이 상쇄 작용하여 네 종류의 헤테로폴리산 촉매는 서로 비슷한 활성을 보였다. 또한 반응에 사용된 헤테로폴리산을 반응온도보다 높은 $200^{\circ}C$에서 열처리한 후에도 그 결정구조가 유지되는 것을 확인하였으며, 이를 통하여 헤테로폴리산의 반응활성이 안정적으로 유지됨을 확인할 수 있었다.

Saccharomyces cerevisiae에서 발현된 Bacillus stearothermophilus Cyclodextrin Glucanotransferase의 특성 (Characterization of Bacillus stearothermophilue Cyclodextrin Glucanotransferase that Expressed by Saccharomyces cerevisiae)

  • 박현이;전숭종;권현주;남수완;김한우;김광현;김병우
    • 한국미생물·생명공학회지
    • /
    • 제30권4호
    • /
    • pp.293-297
    • /
    • 2002
  • 효모 S. cerevisiae에서 B. stearothermophilus 유래의 CGTase를 발현 생산하였으며, 분비, 생산된 단백질을 정제하여 그 특성을 조사하였다. 재조합 효모 S. cerevisiae 2805/pVT- CGTS가 생산하는 CGTase의 분자량은 효모에서 발현될 때 고당쇄가 부가되어 야생형의 68kDa에 비해 15-160% 증가된 약 78-178 kDa으로 나타났다. 효모 S. cerevisiae에서 발현된 CGTase의 효소반응 최적활성조건은 pH7.0, $65^{\circ}C$였고, 열안정성에 있어서 $75^{\circ}C$에서 약 90%의 잔존활성을 가질 정도로 내열성이 개선되었다. 효모 S. cerevisiae에서 발현된 CGTase는 5% soluble starch를 기질로 약 40.2%의 CD 전환율 및 3 : 6 : 1의 $\alpha$-, $\beta$-, ${\gamma}$-CD의 생산 비율을 나타내어 야생형과 별다른 변화가 없었다.

글루코노델타락톤의 김치 발효 지연 효과 (Retardation of Kimchi Fermentation by Addition of Glucono-δ-lacton)

  • 한진숙;강준수
    • 한국식품영양과학회지
    • /
    • 제33권3호
    • /
    • pp.553-559
    • /
    • 2004
  • 본 연구에서는 미생물이 생성하는 글루코노델타락톤을 김치에 첨가하여 냉장저장하였을 때, 김치의 초기 pH를 강하시켜 김치의 주발효균인 유산균의 생육을 억제하여 김치의 보존성을 향상시키고 숙성기간을 연장시키고자 하였다. GDL이 첨가된 김치의 초기 pH강하는 GDL이 수용액에서 유기산인 글루콘산으로 전환되면서 나타나는 현상이며 삼투압 작용에 의해 점차 평형을 이루게 되어 pH가 상승하였다가 숙성이 진행되면서 대조구보다 완만하게 pH가 저 하하였다. pH 강하로 인하여 김치의 초기 유산균의 생육이 지연되면서 대조구와 비교시 숙성기간동안 산 생성량이 적게 나타났다. HPLC 분석에서 김치의 발효동안 oxalic acid, succinic acid, lactic acid, malic acid와 acetic acid가 생성되는 것으로 나타났으며, 대조군의 경우 GDL을 첨가한 경우보다 lactic acid의 생성량이 현저히 많았다. 김치에 첨가된 GDL은 초기 주 발효균인 L. mesenteroides의 생육을 억제함으로써 김치의 숙성을 지연시키고, 그 이후의 L. brevis와 산내성 이 강한 L. plantarum의 생육을 억제함으로써 산도의 증가를 지연시키고 김치 조직의 연화를 방지 할 수 있는 것으로 생각된다. 또한, 글루콘산은 무색의 순한 청량한 신맛을 띄는 유기산으로 관능검사에서 김치 고유의 맛과 향기에 영향을 주지 않았다. 따라서, 김치 제조시 GDL의 첨가는 김치의 유산균의 생육지연을 통하여 김치가 숙성에 도달하는 시간을 지연, 유지 시켜 가식 기간을 연장시킬 수 있으면서, 관능적 품질에 차이가 없는 김치를 제조할 수 있었다.

유기염소계 농약 endosulfan을 분해하는 미생물의 분리 및 분해 특성 (Isolation of endosulfan degrading bacteria and their degradation characteristics)

  • 신재호;곽윤영;김원찬;소재현;신현수;박종우;김태화;김장억;이인구
    • 한국환경농학회지
    • /
    • 제27권3호
    • /
    • pp.292-297
    • /
    • 2008
  • 우리나라에서 유일하게 사용되고 있는 유기염소계 살충제 endosulfan을 미생물학적 방법으로 분해하기 위하여 총 182점의 토양, 퇴비 및 액상의 미생물 시료를 접종원으로 실시한 endosulfan 집식(enrichment) 실험으로부터 endosulfan을 endosulfan diol 형태로 경유하여 분해하는 균주를 선발하고 그 이름을 Bacillus sp. E64-2로 명명하였다. 분리균주는 7일만에 배지에 함유된 10 mg/L 농도의 endosulfan을 99% 이상 분해하였다. 또한 분리균주 Bacillus sp. E64-2의 조효소액은 endosulfan을 endosulfan diol로 전환하는 활성을 가지고 있었으며 균주 자체는 생육 중에 배지의 pH를 배양 7일 만에 pH 7.0에서 pH 8.4로 올릴 수 있었다. 이러한 효소활성과 pH 증가 능력은 분리균주 E64-2에 의한 endosulfan 분해의 주된 작용 인자인 것으로 판단되며 이 균주는 효소에 의한 분해작용과 pH 상승작용을 통하여 토양에 잔류는 난분해성 물질인 endosulfan을 bioremediation하기 위한 연구의 기초 균주로서의 가치가있을 것으로 판단된다.

돈분뇨의 적합한 호기성 액비화를 위한 암모니아 탈기조건 설정 (Estimation of Ammonia Stripping Condition for Adequate Aerobic Liquid-Composting of Swine Manure)

  • 손보균;강성구;조은주;김신도;이창주;김정호
    • 한국토양비료학회지
    • /
    • 제39권2호
    • /
    • pp.73-79
    • /
    • 2006
  • 돈분뇨 중의 악취 성분을 제거하는 동시에 퇴비의 C/N 비를 적정 수준으로 유지하기 위한 방안으로서 축산농가에 보급을 목적으로 pilot 장치를 제작하여 돈분뇨를 호기성 액비화 처리하기 이전에 암모니아 탈기공정 실험을 수행하였다. 암모니아 탈기를 위한 pH 조정을 $Ca(OH)_2$를 이용하였으며, NaOH에 비해 훨씬 현장 적용성이 용이한 것으로 파악되었다. 암모니아 탈기공정의 적정 pH를 도출하기 위해 각각 pH를 9.3, 10.9, 12.3 으로 조절하여 탈기실험을 수행한 결과 pH가 가장 높은 12.3에서 가장 우수한 것으로 나타났고, 이때 반응온도는 $35^{\circ}C$이었다. 암모니아 탈기공정이 진행되는 동안 유리암모니아 질소의 가스상 암모니아로의 전환을 통해 발생되는 방출속도는 탈기공정 초기에는 $0.5355mole\;s^{-1}$ 이었고 탈기공정 후기에는 $0.0253mole\;s^{-1}$ 로 나타나, 주로 탈기공정 초기에 많은 양의 암모니아 가스가 방출되는 것을 알 수 있었다. 탈기공정중 C/N비 변화는 초기 돈분뇨 원수가 4.5이었고 탈기공정 초기에 6.3으로 증가한 이후에 점진적으로 증가하였다. 적정한 탈기를 위한 최적의 탈기시간은 TN과 TC의 회귀 곡선을 통해 C/N비가 6.5 부근인 약 48시간이 적합한 것으로 결론지었다. 탈기를 통해 돈분뇨 중의 암모니아성 질소성분은 79.6% 저감되었으며, 흡수액을 통해 배출된 암모니아가스의 81.3%를 제거하였다.

Serratia marcescens 균주로부터 추출한 Prodigiosin의 흡수분광학적 연구 (Absorption Spectroscopic Studies of Prodigiosin Extracted from Serratia Marcescens Strain)

  • 박희억
    • 한국응용과학기술학회지
    • /
    • 제36권1호
    • /
    • pp.355-361
    • /
    • 2019
  • Serratia marcescens 2354(ATCC 25419) 균주로부터 추출한 붉은 색소는 prodigiosin (PG)이었고, 이를 methanol에 녹여 자외선 및 가시광선 흡수 스펙트라를 측정한 결과 537 nm의 최대흡수파장 (${\lambda}_{max}$)을 갖는 산성용액에서의 전형적인 PG의 흡수 스펙트라이었다. 또한 methanol 용액에서 PG의 농도를 $1.0{\times}10-5M$에서 $9.0{\times}10-5M$로 증가시키면, 537 nm의 흡수강도는 증가하고 467 nm의 흡수강도는 감소하였으며, 500 nm에서 isosbestic point가 관측되었다. 이러한 현상은 537 nm와 467 nm가 각각 산과 염기용액에서의 PG 흡수대이고, 500 nm의 isosbestic point 등을 고려하면 가역적 산-염기 평형반응에 의한 결과라고 볼 수 있다. 한편 pH, 4.75의 acetic acid 완충용액에서 PG의 농도를 $6.0{\times}10^{-4}M$에서 $1.0{\times}10^{-4}M$로 감소시키면 500 nm에서 ${\lambda}_{max}$를 가지는 새로운 흡수대가 나타난다. 이 흡수대는 pH 4.75의 수용액에서만 나타나는 것으로 같은 pH의 순수한 methanol 용액에서는 나타나지 않는다. 이는 PG 분자가 $H_2O$에 의해 ${\alpha}$-이성질체에서 ${\beta}$-이성질체로의 전환에 기인하는 것이다. 즉 PG의 색변화는 용액의 농도 및 용매의 특성에 의해서도 일어날 수 있음을 확인하였다.