• Title/Summary/Keyword: pH 전환

Search Result 551, Processing Time 0.026 seconds

석탄 합성가스로부터 효율적인 생물학적 수소 생산에 관한 연구

  • 강환구;전희진
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.268-273
    • /
    • 2000
  • A microbiological hydrogen production process was optimized. Anaerobic photosynthetic bacteria like Rhodospirillum rubrum which is known to produce hydrogen from carbon monoxide efficiently and remove sulfur was used. To evaluate the potenital of this microorganism the optimization of media fermentation condition light intensity and light requirement for CO conversionwas tried in batch cultures and the continuous fermenter was also applied for this process. The gas residence time on CO conversion was sought out to get high conversion of carbon monoxide to hydrogen. Through this study the possibility of microbial synthtics gas concersion process was proposed.

  • PDF

A Study of Biological Hydrogen Gas Production under Anaerobic Fermentation (혐기성 발효에 의한 생물학적 수소생산에 관한 연구)

  • Yoon, Woo-Hyun;Kim, Hyun-Kab;Lee, Tae-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2006
  • In this study, the optimum condition of pH was investigated on the hydrogen gas production under anaerobic fermentation process. The results of the experiment showed that the optimum condition was observed at pH 6, resulting in 1175.87 mL/L of hydrogen gas production rate and 22.51% theoretical hydrogen conversion ratio. Hydrogen gas production rate and theoretical hydrogen conversion ratio were 901.77 mL/L and 17.48 % respectively at pH 5. At pH 7 and 8, the production rate of hydrogen gas was little low as 82.15 mL/L. Among the organic acids from the sucrose fermentation, propionate was observed as the dominant acid at pH 7 and 8 but butyrate was the dominant at pH 5 and 6.

  • PDF

Expression of Human Lactoferrin Gene and Secretion in Saccharomyces diastaticus YIY345 (효모 Saccharomyces diastaticus YIY 345에서의 Human Lactoferrin 유전자 발현 및 분비)

  • Joo, Yun Jung;Kim, Jong Woo
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.80-89
    • /
    • 1996
  • The expression and secretion of human lactoferrin (hLf) in Sacclnromyces diastaticus were performed. 1. For the secretion of hLf in yeast, recombinant plasmid pYEGLf was constructed using promoter, secretion signal sequence of glucoamylase I gene (STA1) and transcriptional terminator of GAL7 gene. 2. Each correct recombinant plasmid was selected by mini-preparation of plasmid DNA from E coli transformant and restriction enzyme digestion analysis. The selected plasmids, pYEGLf, were transformed into S. diastaticus YIY345 as a expression host, respectively. 3. Western blot analysis using rabbit anti-hLf was carried out to identify expressed hLf. Positive signals were shown in culture supernatant of pYEGLf transformant. 4. About $100{\mu}g-1mg$ of concentrated culture supernatant of positive clone were loaded on paper disc and tested for the antimicrobial activity against E coli. However, no activity was observed. We concluded that this fact results from low concentration of hLf secreted from yeast, compared with the fact that MIC of hLf is as high as $3mg/m{\ell}$. Therefore, the purification of secreted hLf may be require to investigate the antimicrobial activity. From this study, the feasibility of low-cost production of sufficient quantities of human lactofferin for nutritional and therapeutical applications were suggested.

  • PDF

Conversion of Ginsenoside Rd to Compound K by Crude Enzymes Extracted from Lactobacillus brevis LH8 (Lactobacillus brevis LH8이 생산하는 효소에 의한 Ginsenoside Rd의 Compound K로의 전환)

  • Quan, Lin-Hu;Liang, Zhiqi;Kim, Ho-Bin;Kim, Se-Hwa;Kim, Se-Young;Noh, Yeong-Deok;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides from the gastrointestinal tract is extremely low, when ginseng is orally administered. In order to improve absorption and its bioavailability, conversion of major ginsenosides into more active minor ginsenoside is very much required. Here, we isolated lactic acid bacterium (Lactobacillus brevis LH8) having ${\beta}-glucosidase$ activity from Kimchi. Bioconversion ginsenoside Rd by this bacterium in different temperatures was investigated. The maximum activities of crude enzymes precipitated by ethanol were shown in $30^{\circ}C$ and then gradually decreased. In order to compare the effect of pH, the crude enzymes of L. brevis LH8 were mixed in 20mM sodium phosphate buffer (pH 3.5 to pH 8.0) and reacted ginsenoside Rd. Ginsenoside Rd was almost hydrolyzed between pH 6.0 and pH 12.0, but not hydrolyzed under pH 5.0 and above pH 13.0. Ginsenoside Rd was hydrolyzed after 48 h incubation, whereas ginsenoside F2 appeared from 48 h to 72 h, and ginsenoside Rd was almost converted into compound K after 72 h.

Optimum Conditions for Removal of Hydrogen Sulfide Using Fe-EDTA Complex (Fe-EDTA 착물을 이용한 황화수소 제거의 최적 반응 조건)

  • Jin, Sang-Gi;Cha, Jin-Myeong;Lee, In-Wha;Yoon, Suk-Jin;Kim, Si-Wouk
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.177-185
    • /
    • 1996
  • The optimum conditions for the removal of hydrogen sulfide by Fe-EDTA complex in the bubble column reactor were investigated. As the concentrations of the complex increased, the conversion rate of hydrogen sulfide increased, while Fe concentration and pH were stably decreased and the amount of elemental sulfur produced was also increased. Hydrogen sulfide was removed efficiently when the concentration of Fe-EDTA complex was maintained more than 0.05M. pH acts as an important factor for the stability of complex in the oxidation of hydrogen sulfide and optimum pH range was 8.5~9.5. As the molar ratio of EDTA : Fe was increased, the conversion rate of hydrogen sulfide became stable. However, the rate was decreased due to the precipitation of FeS when the concentration of EDTA was decreased. As the concentration of EDTA increased, the conversion rate of hydrogen sulfide increased due to the high stability of Fe-EDTA complex.

  • PDF

폐염균 형질변환 돌연변이 균주에 대한 연구

  • 이동권;박진석;김승환
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1992.05a
    • /
    • pp.25-25
    • /
    • 1992
  • 1.형질전환 조건 설정: 페염균을 casein hydrolysate배지에서 배양하여 550nm에서의 흡광도가 0.1이 되었을 때 pH를 7.0으로 낮추고 형질전환 능력이 나타나도록 할 때에는 pH를 7.6으로 높여 줌으로써 형질전환이 원하는 시기에 발현되도록 함. 2.돌연변이원에 대한 감수성 측정: com- mutant는 야생형보다 돌연변이가 일어난 위치에 따라 UV에 대한 감수성의 차이가 나타났으나 EMS에 대해서는 야생형과 큰 차이가 얼었음. 3.온도민감성: 5시간동안 43$^{\circ}C$에서는 37$^{\circ}C$에서의 생장율의 5%만 증가되었으나 5$0^{\circ}C$에서는 전혀 성장하지 않음.

  • PDF

Oxidative Coupling of Herbicide Propanil and Its Metabolite, DCA(3,4-dichloroaniline) to Humic Monomers (제초제 Propanil 및 그 분해산물인 DCA(3,4-dichloroaniline)와 Humic Monomer들과의 산화적 짝지움반응)

  • Kwon, Tae-Dong;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.384-389
    • /
    • 1998
  • The herbicide propanil and its metabolite, DCA were incubated with oxidative catalysts in the presence or absence of humic monomers to evaluate the incorporation of them into humic substances. Propanil and DCA underwent little or no transformation by oxidatve catalysts in the absence of humic monomers. In the presence of humic monomers, the most effective co-substrate for transformation of propanil was syringic acid by laccase and HRP, that of DCA was catechol by laccase and HRP, and protocatechuic acid by birnessite. The transformation of DCA was the highest when it was incubated with catechol at pH 8.0 during 24 hrs by laccase, and with catechol at pH 3.0 during 2 hrs by HRP, and with protocatechuic acid at pH 5.0 during 2 hrs by birnessite. The DCA transformation increased with increasing concentration of humic monomers. The transformation of DCA was increased with about 5 times when it was incubated with lactase and birnessite together than lactase alone, but that of it was not effected when it was incubated with HRP and birnessite together. When DCA was incubated with dissolved organic carbon in the presence of oxidative catalysts, the transformation of it was not increased by laccase and birnessite but increased by HRP.

  • PDF

Conversion of D-$\alpha$-Amino-$\varepsilon$-Caprolactam into L-Lysine Using Cell-free Extracts of Alcaligenes eutrophus A52 (Alcaligenes eutrophus A52의 무세포 추출액에 의한 D-$\alpha$-Amino-$\varepsilon$-Caprolactam으로부터 L-Lysine으로의 전환)

  • 박희동;최선택;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.375-380
    • /
    • 1987
  • D-$\alpha$-Amino-$\varepsilon$-carpolactam racemase (EC 5.1.1) and L-$\alpha$-amino-$\varepsilon$-caprolactam hydrolase (EC 3.5.2) were fractionated from cell-free extracts of Alcaligenes eutrophus A52 using ammonium sulfate precipitation and DEAE-cellulose ion exchange chromatography. It was made sure that D-$\alpha$-amino-$\varepsilon$-caprolactam was converted to L-$\alpha$-amino-$\varepsilon$-caprolactam by racemase, and then hydrolyzed into L-lysine by hydrolase in Alcaligenes eutrophus A52. For the conversion of D-$\alpha$-amino-$\varepsilon$-caprolactam into L-lysine by cell-free extracts of Alcaligenes eutrophus A52, the optimum temperature and pH were 6$0^{\circ}C$ and 8.5 respectively. The results showed that 0.5% D-$\alpha$-amino-$\varepsilon$-caprolactam was converted to L-lysine at 55$^{\circ}C$ for 10 hr with a conversion rate of 98% by cell-free extracts containing 3.1mg of protein.

  • PDF

Evaluating the impact of enzyme hydrolysis process on the ethanol production (바이오에탄올 생산 공정에서 당화 전환 공정의 효율성 평가)

  • Na, Jong-Boon;Woo, Sang-Sun;Park, Ji-Yeon;Lee, Joon-Pyo;Park, Soon-Chul;Lee, Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.105.2-105.2
    • /
    • 2010
  • 전처리 후 얻어진 셀룰로스 고분자를 단당류로 전환하기 위해서는 셀룰라제를 이용한 당화 과정이 필요하다. 통상 실험식 연구에서는 셀룰로스 당화시 당수율을 최대로 하기위해 pH조절을 위한 Citrate buffer와 미생물 오염을 막기 위한 Autoclave에서의 멸균 과정을 거친다. 하지만 대량생산을 목적으로 하는 산업체에서는 적용이 어렵다는 문제점이 있다. 따라서 본 연구에서 이를 대신하여 산업체에서 적용 가능한 당화전환 공정의 효율성을 평가하고자 하였다. Autoclave 멸균을 대체하는 공정으로 항생제 첨가와 여과에 의한 제균을 선택하였고, citrate buffer를 대신하여 buffer를 첨가하지 않은 물을 pH를 조정하여 사용 하였다.실험결과 기존의 당화공정을 사용하였을 때 당화율이 81%이었고, pH를 조절한 제균 water에 항생제를 첨가하는 공정은 71%로 나머지 배지들 중 가장 높은 당화율을 나타냈다. 이것은 기존의 당화율보다 10% 낮은 수치이나 공정비를 교려하여 봤을 때 효율성 있는 공정으로 판단된다.

  • PDF

Transformation of Bacillus Subtilis by Streptomyces bobili R-Plasmid DNA (Streptomyces bobili의 R-Plasmid. DNA에 의한 Bacillus subtilis의 Transformation)

  • 김상달;도재호
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.163-168
    • /
    • 1983
  • The penicillin resistant plasmid DNA was prepared from Streptomyces bobili YS-40, producing penicillinase, by the phenol extraction method and introduced into Bocillus subtilis IAM 12118 by the transformation procedure of Mahler method. The optimal pH and temperature on the transformation was 7.0, 3$0^{\circ}C$ respectively. Above 20 minutes contact of plasmid DNA and recipient cell was shown the high transformation frequency. The transformant of penicillin resistance was proportionally increased as increase of the DNA concentration. The addition of lysine in transformation system increased the transformation frequency about 6-fold and the addition of the chloramphenicol did not affect the transformation frequency.

  • PDF