• Title/Summary/Keyword: pH

Search Result 43,939, Processing Time 0.067 seconds

Effects of Pretense Treatment on Functional Properties of Soymilk Protein (단백분해 효소처리가 두유단백질의 기능성에 미치는 영향)

  • 변진원;황인경
    • Korean journal of food and cookery science
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 1995
  • This study was carried out to investigate the effect of protease on the functionality of soymilk protein. The protease from Bacillus polymyxa was selected because of the least production of bitter taste and calcium-aggregation. The results are summarized as follows: 1. Solubility of SMP(soymilk protein) and SPI(soyprotein isolate) were lowest at pH 4.7 and increased as the pH value reached closer to either ends. PT-SMP(pretense treated soymilk protein) showed higher solubility at all pH range, especially at pH 4.7 than SMP, SPI. 2. Emulsion activity of three samples was lowest at pH 4.7 and significantly increased as pH approched higher acidic or alkaline regions. PT-SMP showed similar activity to other samples, but less stability. 3. Foam capacity of PT-SMP was lowest at pH 8 and increased in acidic, alkaline pH. PT-SMP showed higher foam capacity at all pH range, but lower foam stability than SMP and SPI. 4. PT-SMP showed higher heat coagulability than other samples at all pH range except pH 4.7.

  • PDF

Studies on the Removal of Phytate from Korean Perilla (Perilla ocimoides, L.) Protein (들깨종실단백질 중의 phytate 제거에 관한 연구)

  • Park, Jin-Hee;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.343-349
    • /
    • 1990
  • The solubility of protein and phytate was measured at various pH's in distilled water and at various concentrations of NaCl, $CaCl_2\;and\;Na_2SO_3$ solutions, and then optimum condition for producing low phytate protein isolate from perilla flour was investigated. The protein solubility in water showed minimum at pH 4.0 and increased at pH higher or lower than 4.0, while phytate solubility was highest at pH 5.0 and decreased at pH higher or lower than 5.0. In NaCl solution, protein solubility was lowest between pH 3.0-4.0, while phytate solubility was high between pH 2.0-5.0 and abruptly decreased above PH 6.0. In $Na_2SO_3$ solution, protein solubility was lowest between pH 2.0-3.0 and phytate solubility showed maximum values between pH $5.0{\sim}6.0$, and it's solubility was low in 3% salt concentration at all pH ranges. In $CaCl_2$ solution, protein solubility in 3% salt concentration was relatively low at all pH ranges, and phytate solubility showed highest values between pH $2.0{\sim}3.0$ and abruptly decreased (1.0%) above pH 4.0. In order to make low phytate protein isolate, defatted perilla flour protein was extracted at pH9.0 and precipitated at pH 4.0 in 3% NaCl solution. The yield of low phytate protein isolate was 61.4% of total protein. This protein was found to contain 0.02% phytate by weight.

  • PDF

Comparison of Pork Quality by Different Postmortem pH24 Values (돈육의 사후 24시간 pH 수준에 따른 육질 특성)

  • Park, B.Y.;Cho, S.H.;Yoo, Y.M.;Kim, J.H.;Chae, H.S.;Ahn, J.N.;Kim, Y.K.;Lee, J.M.;Yun, S.G.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.233-238
    • /
    • 2002
  • Meat quality of the domestic pork loins(n=537) classified by 3 groups(5.31-5.50, 5.51-5.70 and $\geq$5.71) according to pH at 24hr post-mortem(pH24) was investigated. In proximate chemical compositions, protein was highest and fat was lowest in the pork loins of pH24 5.31-5.50 group. Water holding capacity increased as pH24 increased, whereas purge loss and cooking loss decreased as pH24 increased. Meat color values(CIE L*, a*, b*, Chroma, Hue and $\Delta$E) decreased as $pH_{24}$ increased. In texture traits, hardness and chewiness were lowest and fat hardness was highest in the pork loins of $pH_{24}{\geq}$5.71 group when compared to the other $pH_{24}$ groups. However, Warner-Bratzler Shear force, springiness and cohesiveness were not significantly different among the pH24 groups(P>0.05). In sensory properties, juiciness and tenderness were highest in $pH_{24}{\geq}$5.71 group. From the results of this study, pork quality was highly related to $pH_{24}$. Therefore, the factors affecting the post-mortem pH, such as stress before slaughter, slaughtering methods, and cooling condition slaughter must be properly controlled and improved to produce high quality pork.

Study on Rumen Cellulolytic Bacterial Attachment and Fermentation Dependent on Initial pH by cPCR (cPCR 기법을 이용한 초기배양 pH에 의한 반추위 섬유소 분해 박테리아의 부착 및 발효에 관한 연구)

  • Kim, M.S.;Sung, H.G.;Kim, H.J.;Lee, Sang-S.;Chang, J.S.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.615-624
    • /
    • 2005
  • The cPCR technique was used to monitor rumen fermentation and attachment of Fibrobacter succinogenes to cellulose at different pH in the in vitro culture medium. The target fragments of 16S rDNA(445 bp) were amplified from genomic DNA of F. succinogenes with specific primers and internal controls(205 bp) were constructed. Cell counts were estimated from the amounts of genomic DNA, which was calculated from cPCR results. F. succinogenes in pH 6.8 and 6.2 showed apparently higher attachment than in pH 5.8 during all incubation time. There were some difference between pH 6.8 and 6.2 in the degree of attachment, but the different was not significant (P>0.05). Cellulose degradation increased in process of incubation time and the increasing rate was higher when initial pH was higher. The pH in culture medium decreased regardless of initial pH in course of incubation time. After 24 h of incubation, medium pH was dropped by 0.24, 0.58 and 0.16 units from original medium pH 6.8, 6.2 and 5.8, respectively. More gas was produced at higher initial pH in the same manner as in cellulose degradation. In summery, Initial pH of rumen culture in vitro significantly influenced cellulose digestion, gas production, pH change and bacterial attachment. Especially, low pH(5.8) resulted in much lower bacterial attachment and fiber digestion compared to higher medium pH.

Pork Quality Traits According to Postmortem pH and Temperature in Berkshire

  • Kim, Tae Wan;Kim, Chul Wook;Yang, Mi Ra;No, Gun Ryoung;Kim, Sam Woong;Kim, Il-Suk
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • This study was performed to investigate the role of pH and temperature postmortem, and to demonstrate the importance of these factors in determining meat quality. Postmortem pH45min (pH at 45 min postmortem or initial pH) via analysis of Pearson’s correlation showed high positive correlation with pH change pHc24 (pH change from pH45min to pH24h postmortem). However, postmortem pH after 24 h (pH24h or ultimate pH) had a high negative correlation with pH change, pHc24, CIE L*, and protein content. Initial temperature postmortem (T1h ) was positively associated with a change in temperature from 45 min to 24 h postmortem (Tc24) and cooking loss, but negatively correlated with water holding capacity. Temperature at 24 h postmortem (T24h) was negatively associated with Tc24. Collectively, these results indicate that higher initial pH was associated with higher pHc24, T1h, and Tc24. However, higher initial pH was associated with a reduction in carcass weight, backfat thickness, CIE a* and b*, water holding capacity, collagen and fat content, drip loss, and cooking loss as well as decreased shear force. In contrast, CIE a* and b*, drip loss, cooking loss, and shear force in higher ultimate pH was showed by a similar pattern to higher initial pH, whereas pHc24, carcass weight, backfat thickness, water holding capacity, fat content, moisture content, protein content, T1h, T24h, and Tc24 were exhibited by completely differential patterns (p<0.05). Therefore, we suggest that initial pH, ultimate pH, and temperatures postmortem are important factors in determining the meat quality of pork.

Optimized pH condition of protein extraction of Gastrodia elata Blume by alkaline method (알칼리에 의한 천마 단백질 추출의 최적 pH 조건)

  • Jang, Hye-Lim;Yoon, Kyung-Young
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.256-260
    • /
    • 2015
  • This study investigated the optimum pH condition for the efficient extraction of protein from Gastrodia elata Blume. Five extraction pH values (8, 9, 10, 11, and 12) and three precipitation pH values (2, 4, and 6) were used. The protein content, browning degree, and recovery yield of the protein obtained under each pH condition were determined. Most of the G. elata Blume was made up of carbohydrates, and its protein content was also high. The amount of the extracted protein increased according to the increase in the extraction pH, but did not significantly differ between pH 8 and pH 9. The browning degree of the protein significantly increased as the extraction pH increased. The greatest amount of protein was precipitated at pH 4, the recovery yield of which was also the highest. As a result, it was found that the combination of extraction pH 9 and precipitation pH 4, which resulted in a 38.7% recovery yield and a low browning degree, is the optimum condition for the efficient extraction of protein from G. elata Blume.

Effect of pH on PAH Transport in Brush Border Basolateral Membrane Vesicles of Rabbit Proximal Tubule (가토 신장 근위세뇨관의 Brush Border 및 Basolateral Membrane Vesicle에서 PAH 이동에 미치는 pH의 영향)

  • Kim, Yong-Keun;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.281-293
    • /
    • 1988
  • The effect of pH on the rate of PAH uptake was studied in rabbit renal basolateral membrane vesicles (BLMV) and brush border membrane vesicles (BBMV). In the absence of Na in incubation medium, a decrease in external $pH(pH_0)$ led to an increase in probenecid-sensitive PAH uptake by BLMV. In the presence of Na, the probenecid-sensitive PAH uptake was unaltered when the $pH_0$ decreased from 8.0 to 6.0 but further decrease in $pH_0$ to 5.5 increased significantly the uptake. The probenecid-sensitive PAH uptake was not affected by an alteration in pH per se in the absence of a pH gradient with or without the presence of Na. However, the presence of Na stimulated the probenecid-sensitive PAH uptake in all pH ranges tested over that measured in the absence of Na. A similar pattern of pH dependence on the PAH uptake was observed in BBMV but the presence of Na did not alter the probenecid-sensitive PAH uptake in the presence and absence of a pH gradient. Kinetic analysis for BLMV showed that Na or pH gradient increased Vmax of the probenecid-sensitive PAH uptake without a change in Km value. These results suggest that PAH is transported by $OH^-/PAH$ exchange process in the luminal membrane, but the pH dependence in the BLMV is not unequivocally consistent with an anion exchange process. The PAH transport is dependent on Na in BLMV but not in BBMV.

  • PDF

Studies on the Removal of Phytate from Korean Rapeseed(Brassica napus, L) Proteins -Ⅰ. Effects of pH and Salts on Protein and Phytate Solubility of Defatted Rapeseed Flour- (한국산 평지 종실 단백질의 Phytate 제거에 관한 연구 -제1보. 평지 종실 단백질과 Phytate 의 용해도에 대한 pH와 염류의 영향-)

  • Huh, Chai-Ok;Yang, Cha-Bum
    • Applied Biological Chemistry
    • /
    • v.29 no.2
    • /
    • pp.212-218
    • /
    • 1986
  • Proteins in Korean rapeseeds, as in many other plantseeds, are usually bound to phytate molecules. These phytate-bound proteins are of little value as foodstuffs because of their poor solubility in digestive systems. Therefore it is necessary to remove phytates from proteins in order to convert these proteins io a useful foodstuff. In the work, an efficient procedure for removal of phytates from defatted Korean rapeseed was found. The influence of pH on the solubility of protein and phytate of rapeseed flour showed that the former was the lowest at pH 5.0 and began to increase as pH further raised. Meanwhile, the latter was the highest at pH 6.0, however, it was decreased abruptly at alkaline pH, especially to content of 1.3% at pH 11.5. The solubility cf protein was relatively high in NaCl aqueous solution at $pH\;6.0{\sim}8.0$, and did not male any noticeable difference depending on NaCl concentration. On the other hand, the solubility of phytate was high at pH of below 6.0 showing an abrupt decrease at pH of above 6.0. The solubility of protein in $CaCl_2$ aqueous solution was highest at $pH\;6.0{\sim}8.0$, however, there was no significant change at the whole range of tested pH of the solution. A maximum solubility of phytate was shown at $pH\;3.0{\sim}4.0$. And it was decreased abruptly at a higher pH of the above range and also decreased at a lower pH with higher $CaCl_2$ concentration. The solubility of phytate in $Na_2SO_3$ aqueous solution was highest at $pH\;5.0{\sim}8.0$. As the concentration goes up the maximum value of solubility was found to move to higher pHs. Depending on the concentration of $Na_2SO_3$, the decreasing pattern was changed in an alkaline solution. The solubility of phytate in the solution containing low concentration of $Ca^{2+}$ ion was low in all treatments at pH of above 7.0 and showed the maximum value at low pH as $Ca^{2+}$ ion concentration increases. The solubility of protein at pH 11.5 showed the highest value in $1mM\;Ca^{2+}$ ion solution.

  • PDF

A Study on Synergisitic Effect of Chitosan and Sorbic Acid on Growth Inhibition of Escherichia coli O517:H7 and Staphylococcus aureus (E. coli O517:H7 과 Staphylococcus aureus의 증식억제에 대한 키토산과 소르빈산의 상승효과에 관한 연구)

  • 조성범;이용욱;김정현
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.2
    • /
    • pp.112-120
    • /
    • 1998
  • This study was performed to investigate the synergistic effect of chitosan and sorbic acid as a new food preservative. So it was performed to investigate inhibitory effect on growh of E. coli 0157:H7, gram negative pathogenic food borne disease bacteria and of S. aureus, gram positive food borne disease bacteria in chitosan, sorbic acid and combination of chitosan and sorbic acid. Minimun Inhibitory Concentration (MIC) of chitosan in E. coli 0157:H7 was 500 ppm at pH 5.0, 250 ppm at pH 5.5, 500 ppm at pH 6.0, and 2000 ppm at pH 6.5, while in Staph. aureus 31.25 ppm at pH 5.0 and 62. 5 ppm at more than pH 5.5. also, MIC of sorbic acid in E. coli 0157:H7 was 500 ppm at pH 5.0, 1500 ppm at pH 5.5, and 2000 ppm at more than pH 6.0, while in Staph. aureus 1500 ppm at pH 5.0 and more than 2000 ppm at more than pH 5.5. Due to the effect of pH in E. coli 0157:H7, MIC of combined chitosan and sorbic acid was 500 ppm of chitosan with 500 ppm of sorbic acid at pH 6.5, but 250 ppm of chitosan with 31.3 ppm of sorbic acid at pH 5.0. In Staph. aureus, there was great effect of chitosan, but neither effect of pH nor sorbic acid. When E. coli 0157:H7 were treated with 500 ppm of chitosan with 500 ppm of sorbic acid and 250 ppm of chitosan with 250 ppm of sorbic acid at pH 6.5, they were inhibited. But, they were increased at the initial concentration of bacteria at 1000 ppm of chitosan in 18 hours, at 500 ppm of chitosan in 36 hours. There was no effect of growth inhibition with sorbic acid but great effect with chitosan on Staph. aureus. The correl~tions between MICs of chitosan and sorbic acid in E. coli 0157:H7 accoding to pH were higher than those in Staph. aureus. R values in E. coli 0157:H7 were 0.95 (p<0.01), 0.99 (p<0.01), 0.97 (p<0.01), and 0.99 (p<0.01) at pH 6.5, 6.0, 5.5, and 5.0 respectively. The synergistic effect of chitosan and sorbic acid in E. coli 0157:H7 could be confirmed from the result of this experiment. Therefore, it was expected that the food preservation would increase or maintain by using sorble acid together with chitosan, natural food additive that did no harm to human body.

  • PDF

pH Variance Model Depending on Phosphate Ion Form (인산염 이온 형태에 의한 pH 변량 모형)

  • Soh, Jae-Woo;Soh, Soon-Yil;Nam, Sang-Yong
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.854-859
    • /
    • 2015
  • This experiment was performed to develop a model for nutrition ion concentration and EC in regard to change in pH from 4.0 to 8.0 in nutrient solution. The pH changes according to the variation of $HPO_4{^{-2}}$ and $H_2PO_4{^-}$ in the nutrient solution while variation of EC increased from pH 4.0 to 5.0, stabilized from pH 5.0 to 7.0 and increased again from pH 7.0 to 8.0. For the variance of major elements in the nutrient solution, K, Ca, N and P increased while pH was higher, especially the variables for K and P were increased largely. On the other hand, variables of Mg and S were stable. Based on analysis of the ion balance model of nutrient solution, the cation increased than anion over rising the variation of pH while balance point of ion moved from a-side to d-side. In addition, the imbalance increased while it moved away from the EC centerline as variance of pH increased. It was larger than effect of EC variance to correction values of equivalence ratios of K and Ca about variation of $HPO_4{^{-2}}$ and $H_2PO_4{^-}$ while as variance of pH increased, K decreased but Ca increased. These showed the result that variance of pH about correction values of equivalence ratios of K and Ca gave a second-degree polynomial model rating of 0.97. Through this research, it was identified the pH variable model about variance among pH, ion and EC according to gradient of phosphate.