Predictive growth model of Vibrio parahaemolyticus in modified surimi-based imitation crab broth was investigated. Growth curves of V. parahaemolyticus were obtained by measuring cell concentration in culture broth under different conditions ($Initial\;cell\;level,\;1{\times}10^{2},\;1{\times}10^{3},\;and\;1{\times}10^{4}\;colony\;forming\;unit\;(CFU)/mL$; temperature, 15, 25 37, and $40^{\circ}C$; pH 6, 7, and 8) and applying them to Gompertz model. Microbial growth indicators, maximum specific growth rate (k), lag time (LT), and generation time (GT), were calculated from Gompertz model. Maximum specific growth rate (k) of V. parahaemolyticus increased with increasing temperature, reaching maximum rate at $37^{\circ}C$. LT and GT were also the shortest at $37^{\circ}C$. pH and initial cell number did not influence k, LT, and GT values significantly (p>0.05). Polynomial model, $k=a{\cdot}\exp(-0.5{\cdot}((T-T_{max}/b)^{2}+((pH-pH_{max)/c^{2}))$, and square root model, ${\sqrt{k}\;0.06(T-9.55)[1-\exp(0.07(T-49.98))]$, were developed to express combination effects of temperature and pH under each initial cell number using Gauss-Newton Algorism of Sigma plot 7.0 (SPSS Inc.). Relative coefficients between experimental k and k Predicted by polynomial model were 0.966, 0.979, and 0.965, respectively, at initial cell numbers of $1{\times}10^{2},\;1{\times}10^{3},\;and\;1{\times}10^{4}CFU/mL$, while that between experimental k and k Predicted by square root model was 0.977. Results revealed growth of V. parahaemolyticus was mainly affected by temperature, and square root model showing effect of temperature was more credible than polynomial model for prediction of V. parahaemolyticus growth.
Purpose: Ethylenediamine-tetramethylenephosphonic acid (EDTMP) has widely used chelator for the labeling of bone seeking radiopharmaceuticals complexed with radiometals. $^{153}Sm$ can be produced by the HANARO reactor at the Korea Atomic Energy Research Institute, Taejon, Korea. $^{153}Sm$ has favourable radiation characteristics $T1/2=46.7\;h,\;{\beta}_{max}=0.81\;MeV\;(20%),\;0.71\;MeV\;(49%),\;0.64\;MeV\;(30%)\;and\;{\gamma}=103\;keV\;(30%)$ emission which is suitable for imaging purposes during therapy. We investigated the labeling condition of $^{153}Sm$-EDTMP and imaging of $^{153}Sm$-EDTMP in normal rats. Materials and methods: EDTMP 20 mg was solved in 0.1 mL 2 M NaOH. $^{153}SmCl^3$ was added to EDTMP solution and pH of the reaction mixtures was adjusted to 3 and 12, respectively. Radiochemical purity was determined with paper chromatography. After 30 min. reaction, reaction mixtures were neutralized to pH 7.4, and the stability was estimated upto 120 hrs. Imaging studies of each reaction were perfomed in normal rats (37 MBq/0.1 mL). Results: The labeling yield of $^{153}Sm$-EDTMP was 99%. The stability of pH 8 reaction at 60, 96 and 120 hr was 99%, 95%, 89% and that of pH 12 at 36, 60, 96 and 120 hr was 99%, 95%, 88%, 66%, respectively. The $^{153}Sm$-EDTMP showed constantly higher bone uptake from 2 to 48 hr after injection. Conclusion: $^{153}Sm$-EDTMP, labeled at pH 8 reaction condition, has been stably maintained. Image of $^{153}Sm$-EDTMP at 2, 24, 48 hr after injection, demonstrate that $^{153}Sm$-EDTMP is a good bone seeking radiopharmaceuticals.
Reduction and equilibrium of vanadium-DTPA (DTPA = diethylenetriaminepentaacetic acid, $H_5A$) complexes at mercury electrodes are studied in 0.5M $NaClO_4$ aqueous solution at 3.2 < pH < 10.5 and 25$^{\circ}$C. At 3.2 < pH < 5.9, the reduction reaction is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}HA^{2-}$, while at 5.9 < pH < 10.5 it is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}A^{3-}$. The stability constants of $V{\cdot}HA^{2-}$ and $V{\cdot}A^{3-}$ are found to be $6.46{\times}10^{9}$ and $3.09{\times}10^{14}$, respectively. V(IV)-DTPA undergoes stepwise complexation as $VO^{2+}+H_2A^{3-}=VO{\cdot}HA^{2+}H^{+}$ and $VO{\cdot}HA^{2-}=VO{\cdot}A^{3+}+H$, where acidity constant of $VO{\cdot}HA^{2-}$- is pKa = 7.15. Stability constants of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $1.41{\times}10^{14}$ and $3.80{\times}10^{17}$, respectively. It is detected that $VO^{2+}-DATA$ is reduced irreversibly to $VO^{2-}$ with the transfer coefficient of $\alpha$ = 0.43. At more cathodic overpotential, the reduction is stepwise as V(IV)${\to}$V(III)${\to}$V(II). The first one corresponds to $VO{\cdot}HA^{2-}+e^{-}{\to}VO{\cdot}HA{3+}$ at 3.2 < pH < 7.2 and $VO{\cdot}A^{3-}+e^{-}{\to}VO{\cdot}A^{4-}$ at 7.2 < pH < 10.5. The second is identical to that of V(III). Diffusion coefficients of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $(9.0{\pm}0.3){\times}10^{-6}cm^2/s$ and $(5.9{\pm}0.4){\times}10^{-6}cm^2/ses$, respectively.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2008.11a
/
pp.450-451
/
2008
Amorphous silicon Solar cell has n-i-p structure in general, and each layer's thickness and doping concentration are very important factors which are as influential on efficiency of salar cell. Using AFORS HET simulation to get the high efficiency, by adjusting n layer's thickness and doping concentration, p layer's doping concentration. The optimized values are a-Si:H(n)'s thickness of 1nm, a-Si:H(n)r's doping concentration of $2\times10^{20}cm^{-3}$, a-Si:H(p+)r's doping concentration of $1\times10^{19}cm^{-3}$. After optimization, the solar cell shows $V_{oc}$=679.5mV, $J_{sc}$=39.02mA/$cm^2$, FF=83.71%, and a high Efficiency=22.21%. Though this study, we can use this study for planning or manufacturing solar cell which has high efficiency.
Kim, Heejung;Jang, Juyeon;Baek, Seungsin;Yi, Junsin
한국신재생에너지학회:학술대회논문집
/
2011.11a
/
pp.64.2-64.2
/
2011
a-Si 박막 태양전지는 a-Si:H을 유리 기판 사이에 주입해 만드는 태양전지로, 뛰어난 적용성과 경제성을 지녔으나 c-Si 태양전지에 비해 낮은 변환 효율을 보이는 단점이 있다. 변환 효율을 높이기 위한 연구 방법으로는 a-Si 박막 태양전지 단일cell 제작 시 high Bandgap을 가지는 p-layer를 사용함으로 높은 Voc와 Jsc의 향상에 기여할 수 있는데, 이 때 p-layer의 defect 증가와 activation energy 증가도 동시에 일어나 변환 효율의 증가폭을 감소시킨다. 이를 보완하기 위해 본 실험에서는 p-layer에 기존의 p-a-Si:H를 사용함과 동시에 high Bandgap의 buffer layer를 p-layer와 i-layer 사이에 삽입함으로써 그 장점을 유지하고 높은 defect과 낮은 activation energy의 영향을 최소화하였다. ASA 시뮬레이션을 통해 a-Si:H보다 high Bandgap을 가지는 a-SiOx 박막을 사용하여 p-type buffer layer의 두께를 2nm, Bandgap 2.0eV, activation energy를 0.55eV로 설정하고, i-type buffer layer의 두께를 2nm, Bandgap 1.8eV로 설정하여 삽입하였을 때 박막 태양전지의 변환 효율 10.74%를 달성할 수 있었다. (Voc=904mV, Jsc=$17.48mA/cm^2$, FF=67.97).
The electrochemical behavior of doxorubicin hydrochloride was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). From CV and SWV studies of doxorubicin hydrochloride in the acetate buffers of various pH values, it was found that protons were involved in the reduction of the antibiotic at the $H^+/e^$- ratio at one ( $\DeltaEp/pH =-53 ∼ -61 mV at 23^{\circ}C$), proposing the electrochemical reduction of the quinone moiety in its anthraquinone aglycone. Its electrochemical behavior was pseudo-reversible in the acetate buffer of pH 3.5 by exhibiting the well-defined single cathodic and anodic waves and the ratio of $lp^a/lp^c$ at approximately one over the scan rates of 10∼100 mV/s. Fast and sensitive SWV showing a single peak of doxorubicin has been applied for its quantitative analysis using an acetate buffer of pH 3.5. A linearity was obtained when the peak currents (lp) were plotted against concentrations of doxorubicin in the range of $5.0\times10^{-7} M∼1.0\times10^{-5}$M with a detection limit of $1.0\times10^{-7}$ M.
Park, Seok-Kyu;Cho, Young-Su;Shon, Mi-Yae;Gal, Sang-Wan;Lee, Sang-Won
Food Science and Preservation
/
v.14
no.2
/
pp.194-200
/
2007
In order to enhance the functionality and storage period of traditional fermented foods, the strain CH-14, which To enhance the quality of traditional fermented foods, and to lengthen acceptable storage periods, a bacterial strain, CH-14, showing potent enzyme activities and antibacterial capabilities, was isolated and characterize4 The bacterium wn Gram-positive, catalase-positive, oxidase-negative, formed endospores, expressed flagella, was rod-shaped, and had dimensions of 0.5 0.7m and 3.5 4.2m. The bacterium CH-14 was identified as Bacillus subtilis using Bergey's Manual of Systematic Bacteriology, Bergey's Manual of Determinative Bacteriology, and an API 50 CHL Carbohydrate Test Kit. An optimum growth medium contained 2% (w/v) cellobiose as a carbon source, a mixture of 0.5% (w/v) yeast extract and 0.5% (w/v) peptone as nitrogen sources, and 0.05% (w/v) $MgSO_4{\cdot}7H_2O$. The optimal culture temperature and the optimal initial pH were in the ranges of 30 $45^{\circ}C$ and 4.5 10.0, respectively. Maximum production of the antibacterial substance occurred after 24h of culture. The minimum inhibitory concentrations of the antibacterial substance were 5mg bacterial dry weight/mL against E. coli and P. mirabilis, and 10 mg/mL against S. aureus, S. enteritidis and V. parahaemolyticus.
The quantitative separations of a mixture containing equal amounts of each cation such as Mn(Ⅱ), Cr(Ⅲ), V(Ⅴ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), and Fe(Ⅲ) are carried out by the elution through $35cm{\times}3.14cm^2$ column of cation exchange resin, $Dowex 50w{\times}12$. The eluents are a mixture of 0.6 M sodium chloride and 0.1 M sodium tartrate (pH = 2.00 and 4.50) for Fe(Ⅲ), V(Ⅴ), Cu(Ⅱ), Ni(Ⅱ) and Co(Ⅱ), and a mixture of 3 M sodium chloride and 0.1 M sodium tartrate (pH = 4.50) or a mixture of 0.7 M sodium chloride and 0.5 M sodium oxalate (pH = 4.50 and 5.00) for Mn(Ⅱ) and Cr(Ⅲ). The subsidiary cations in a standard iron mixture such as V(Ⅴ), Cu(Ⅱ), Ni(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) are separated together from the large amount of Fe(Ⅲ) through $15cm{\times}3.14cm^2$ column of the resin, $Dowex 1{\times}8$, by elution with the eluent of 4.0 M hydrochloric acid. A small amount of Fe(Ⅲ), however, is eluted together with Cu(Ⅱ). V(Ⅴ), Ni(Ⅱ), Mn(Ⅱ) and Cr(Ⅲ) eluted together are separated quantitatively through $10cm{\times}3.14cm^2$ column of the resin,$Dowex 50w{\times}12$. Cu (Ⅱ) and a small amount of Fe(Ⅲ) are separated quantitatively through $10cm{\times}3.14cm^2$ column of the resin, $Dowex 50w{\times}12$, by the elution with a mixture of 0.6 M sodium chloride and 0.1 M sodium tartrate (pH = 2.00 and 4.50) as an eluent. By the conditions obtained in the separations of the standard iron mixture, Fe(Ⅲ) and all of the subsidiary cations in steel are quantitatively separated.
The membrane potential in the subepidermal cells of Lemna gibba G3 fronds was measured in the dark with glass capillary microelectrodes. At pH 7, the membrane potential, approximately-215 mV, could be depolarized to -82∼-88 mV by 0.1 mM dicyclohexylcarbodiimide (DCCD) or by KCN at 0.3 mM or higher concentrations. When the pH of the medium was altered the potential showed reversible changes, while it revealed no response to the external pH changes when energy transduction across the membrane was being blocked by 0.1 mM DCCD. The results support an assumption that the active component of the membrane potential of Lemna subepidermal cells is generated by electrogenic H+ -pump. By the addition of 0.10∼5.00 mM salicylic acid(SA) to the bathing medium the membrane potential was depolarized to a great extent, and the removal of SA from the medium repolarized the potential showing almost complete recovery, 92.3∼97.6% to the initial levels. Although the potential was greatly depolarized by 5.0% or higher concentrations of dimethylsulfoxide (DMSO), the recovery rate by DMSO removal was decreased as the pretreatment concentration had increased. Twenty percent DMSO pretreatment limited the recovery at only 47.1%. The presence of SA in the bathing medium could reversibly increase the permeability of the plasmalemma. DMSO at its concentration of 5.0% or higher increased the permeability of the membrane by irrevesibly impairing the membrane component involved in the membrane permeability.
Methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) have been widely used as solvents in various industries. Biodegradation of MEK and MIBK by Pseudomonas putida KT-3, which could utilize MEK or MIBK as a sole carbon source, was characterized, and the cosubstrate interaction in MEK/MIBK mixture was also studied. Within the range of initial MEK concentration (from 0.5 to 5.5 mM), an increased substrate concentration increased the specific degradation rate of MEK by P putida KT-3 (from 3.15 to 10.58 mmol/g DCW$\cdot$h), but the rate sightly increased at 11.0 mM of initial MEK concentation (11.28 mmol/g DCW$\cdot$h). The similar degradation rates of MIBK (4.69-4.92 mmol/g DCW$\cdot$h) were obtained at more than 3.0 mM of initial MIBK concentation. Kinetic analysis on the degradation of MEK/MIBK mixture by P. putida KT-3 showed that MEK or MIBK acted as a competitive inhibitor. Maximum degradation rate ($V_{max}$), saturation constant ($K_{m}$) and inhibition constant ($K_{1}$) were as follows: $V_{max,MEK}$=12.94 mmol/g DCW$\cdot$h; $K_{m,MEK}$=1.72 mmol/L; $K_{l,MEK}$=1.30 mmol/L; $V_{max,MIBK}$=5.00 mmol/g-DCW$\cdot$h; $K_{m,MIBK}$=0.42 mmol/L; $K_{l,MEK}$=0.77 mmol/L.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.