• Title/Summary/Keyword: pGFPuv

Search Result 5, Processing Time 0.025 seconds

Effects of pH on Purification of GFPuv/Cytochrome c-552 Fusion Protein

  • Lee, Sang-On;Hong, Eul-Jae;Choe, Jeong-U;Hong, Eok-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.539-542
    • /
    • 2003
  • Fusion gene of GFPuv and Cytochrome c-552 was inserted into the pTrcHis B vector and transferred to E. coli. A fusion protein of GFPuv and Cytochrome c-552 was expressed in BL21. This fusion protein was composed of a His-tag for purification using an immobilized metal affinity chromatography(IMAC). IMAC constitutes a rather facile means of unravelling the principles of recognition and, in particular, of identifying the counterligands on the protein surface, which interact with the ligated and immobilized metal ions. Histidine when present on the surface of a protein molecule under a favorable solvent condition, may serve as electron donors in coordination with the immobilized chelates of some transition metal ions$(Ni^{2+})$.

  • PDF

Display of green fluorescent protein (GFP) on the cell surface of Zymomonas mobilis using N-terminal domain of ice nucleation protein (빙핵활성단백질의 N-terminal 부분을 이용한 녹색형광단백질의 Zymomonas mobilis 세포 표면 발현)

  • Lee, Eun-Mo;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.115-119
    • /
    • 2009
  • Green fluorescent protein (GFPuv) was displayed on the surface of ethanol-producing bacteria Zymomonas mobilis using N-terminal domain of ice nucleation protein (INP) as an anchoring motif. To evaluate the ice nucleation protein as plausible anchor motif in Z. mobilis, GFPuv gene was subcloned into Zymomonas expression vector yielding pBBR1MCS-3/pPDC/INPN/GFPuv plasmid., INP-GFPuv fusion protein was expressed in Z. mobilis and its fluorescence was verified by confocal microscopy. The successful display of GFPuv on Zymomonas mobilis suggest that INP anchor motif could be used for future fusion partner in Z. mobilis strain improvement.

  • PDF

Expression and Purification of GFPuv/Cytochrome c-552 Fusion Protein in E. coli

  • Hong, Eul-Jae;Lee, Sang-On;Choe, Jeong-U;Hong, Eok-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.550-553
    • /
    • 2003
  • The genes of GFPuv and Cytochrome c-552 were amplified by using PCR, and then, fused each other. Fusion gene of GFPuv and Cytochrome c-552 was inserted into the pTrcHis B vector and transferred to E. coli. A fusion protein of GFPuv and Cytochrome c-552 was expressed in JM109 and BL21. This fusion protein was composed of a His-tag for the rapid one-step purification using an immobilized metal affinity chromatography.

  • PDF

Stability of pUC-Derived Plasmids with a Fluorescence Marker in Pectobacterium carotovorum subsp. carotovorum and subsp. betavasculorum

  • Hur, Woon-Yung;Roh, Eun-Jung;Oh, Chang-Sik;Han, Man-Wi;Lee, Seung-Don;Kim, Doo-Ho;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.286-290
    • /
    • 2009
  • The stability of three different kinds of pUC-derived plasmids, pDsRed, pZsYellow, and pGFPuv, was investigated in Pectobacterium strains to utilize those plasmids as tracers. All three plasmids pDsRed, pZsYellow and pGFPuv showed their specific colors in Pectobacterium strains. Especially, the plasmid pDsRed conferred bright pink colonies on the Pectobacterium strains. When the bacteria lost the plasmid pDsRed, the colonies turned white, suggesting that the plasmid could be a good marker system for Pectobacterium strains on different environmental conditions. The effect of the antibiotic pressure on the stability of the plasmid was different depending on the host bacteria. P. carotovorum subsp. betavasculorum was more sensitive to the antibiotic pressure than P. carotovorum subsp. carotovorum Pcc21. However, temperature change significantly affected plasmid stability on both Pectobacterium strains. Almost all strains lost the plasmids with the shift in temperature from $28^{\circ}C$ to $37^{\circ}C$. Presence of the plasmids did not affect bacterial pathogenicity on their own host plants. Among three plasmids, pZsYellow was not useful as a marker because the yellow fluorescent proteins from pZs Yellow were interfered with the yellow natural fluorescence of the plant tissues induced by the defense system. Since the red color of DsRed can be seen with naked eyes, plasmid pDsRed was applicable as a marker. However, the color change was slow so that additional manipulation to increase the expression speed was necessary. Plasmid pGFPuv could serve as a perfect marker without any problem, tracing the reproduction and spread of the plant pathogens perfectly.

Evaluation of a New Episomal Vector Based on the GAP Promoter for Structural Genomics in Pichia pastoris

  • Hong In-Pyo;Anderson Stephen;Choi Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1362-1368
    • /
    • 2006
  • A new constitutive episomal expression vector, pGAPZ-E, was constructed and used for initial screening of eukaryotic target gene expression in Pichia pastoris. Two reporter genes such as beta-galactosidase gene and GFPuv gene were overexpressed in P. pastoris. The expression level of the episomal pGAPZ-E strain was higher than that of the integrated form when the beta-galactosidase gene was used as the reporter gene in P. pastoris X33. The avoiding of both the integration procedure and an induction step simplified the overall screening process for eukaryotic target gene expression in P. pastoris. Nine human protein targets from the Core 50, family of Northeast Structural Genomics Consortium (http://www.nesg.org), which were intractable when expressed in E. coli, were subjected to rapid screening for soluble expression in P. pastoris. HR547, HR919, and HR1697 human proteins, which had previously been found to express poorly or to be insoluble in E. coli, expressed in soluble form in P. pastoris. Therefore, the new episomal GAP promoter vector provides a convenient and alternative system for high-throughput screening of eukaryotic protein expression in P. pastoris.