• Title/Summary/Keyword: pERK translocation

Search Result 74, Processing Time 0.031 seconds

Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells (생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과)

  • Park, Chung Mu
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol is a widespread flavone, and it is usually found in alfalfa, which has been used as a traditional medicine to treat dyspepsia, asthma, and urinary system disorders. Recently, analysis has been conducted on the anti-inflammatory activity of chrysoeriol, but information on its antioxidative capacity is limited. In this study, the antioxidative potential of chrysoeriol against oxidative damage and its molecular mechanisms were evaluated by analysis of the cell viability, reactive oxygen species (ROS) formation, and Western blots in the RAW 264.7 cell line. Chrysoeriol significantly scavenged lipopolysaccharide (LPS)-induced intracellular ROS formation in a dose-dependent manner, without any cytotoxicity. Heme oxygenase-1 (HO-1), a phase II enzyme that exerts antioxidative activity, was also potently induced by chrysoeriol treatment, which corresponded to the translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into the nucleus. Moreover, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) were analyzed due to their important role in maintaining cellular redox homeostasis against oxidative stress. As a result, chrysoeriol-induced HO-1 upregulation was mediated by extracellular signal - regulated kinase (ERK), c-Jun $NH_2$-terminal kinase (JNK), and p38 phosphorylation. To identify the antioxidative potential exerted by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and mitigated by chrysoeriol treatment, which was confirmed by the HO-1 selective inhibitor and inducer, respectively. Consequently, chrysoeriol strongly strengthened the HO-1-mediated antioxidative potential through the regulation of the Nrf2/MAPK signaling pathways.

Protective Effects of the Ethanol Extract of Viola tianshanica Maxim against Acute Lung Injury Induced by Lipopolysaccharides in Mice

  • Wang, Xue;Yang, Qiao-Li;Shi, Yu-Zhu;Hou, Bi-Yu;Yang, Sheng-Qian;Huang, Hua;Zhang, Li;Du, Guan-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1628-1638
    • /
    • 2017
  • Viola tianshanica Maxim, belonging to the Violaceae plant family, is traditionally used in Uighur medicine for treating pneumonia, headache, and fever. There is, however, a lack of basic understanding of its pharmacological activities. This study was designed to observe the effects of the ethanol extract (TSM) from Viola tianshanica Maxim on the inflammation response in acute lung injury (ALI) induced by LPS and the possible underlying mechanisms. We found that TSM (200 and 500 mg/kg) significantly decreased inflammatory cytokine production and the number of inflammatory cells, including macrophages and neutrophils, in bronchoalveolar lavage fluid. TSM also markedly inhibited the lung wet-to-dry ratio and alleviated pathological changes in lung tissues. In vitro, after TSM ($12.5-100{\mu}g/ml$) treatment to RAW 264.7 cells for 1 h, LPS ($1{\mu}g/ml$) was added and the cells were further incubated for 24 h. TSM dose-dependently inhibited the levels of proinflammatory cytokines, such as NO, $PGE_2$, $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$, and remarkably decreased the protein and mRNA expression of $TNF-{\alpha}$ and IL-6 in LPS-stimulated RAW 264.7 cells. TSM also suppressed protein expression of $p-I{\kappa}Ba$ and p-ERK1/2 and blocked nuclear translocation of $NF-{\kappa}B$ p65. The results indicate that TSM exerts anti-inflammatory effects related with inhibition on $NF-{\kappa}B$ and MAPK (p-ERK1/2) signaling pathways. In conclusion, our data demonstrate that TSM might be a potential agent for the treatment of ALI.

Effects of Tribuli Fructus extract on inflammatory responses in IgE-stimulated RBL-2H3 mast cells (비만세포에서 백질려 추출물의 항염증효과에 대한 연구)

  • Rho, Hyo Sun;Park, Yong-Ki;Bae, Hyo Sang
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Objectives : Tribulus terrestris $Linn{\acute{e}}$ (Tribuli Fructus; TF) has been used to treat hypochondrium, agalactia, nebula, itching and vitiligo in traditional Korean medicine. In this study, we investigated the effects of TF 30% ethanol extract on inflammatory responses in IgE-stimulated RBL-2H3 mast cells. Methods : TF extract was prepared by 30% ethanol. RBL-2H3 cells, a rat mast cell line, were treated with TF extract at different concentrations for 1 hr and then stimulated with DNP-IgE/HSA for indicated times. Cell viability was measured by WST-1 assay. The expression of inflammatory cytokines (IL-4, IL-13 and $IFN-{\gamma}$) mRNA was determined by reverse transcriptase-PCR, and the phosphorylation of ERK1/2, p38 and JNK MAP kinases (MAPKs) was determined by Western blot. The nuclear expression of $NF-{\kappa}B$ p65 in the cells was detected by Western blot and immunocytochemistry, respectively. Results : The treatment of TF extract at 0.1 and $0.2mg/m{\ell}$ significantly decreased the expression of IL-4 and IL-13 mRNA in IgE-stimulated RBL-2H3 mast cells, while significantly increased the expression of $IFN-{\gamma}$ mRNA. TF extract treatment was also inhibited the phosphorylation of ERK1/2, p38 and JNK MAPKs in IgE-stimulated RBL-2H3 mast cells in a dose-dependent manner. In addition, TF extract significantly blocked the translocation of $NF-{\kappa}B$ p65 into the nuclear of cells after IgE stimulation. Conclusions : These results indicate that TF extract inhibits inflammatory response in IgE-stimulated mast cells through blocking MAPKs/$NF-{\kappa}B$ pathway. This suggests that TF extract has an anti-inflammatory activity in mast cell activation.

Dendritic Cell Activation by Glucan Isolated from Umbilicaria Esculenta

  • Kim, Hyung-Sook;Kim, Jee-Youn;Lee, Hong-Kyung;Kim, Moo-Sung;Lee, Sang-Rin;Kang, Jong-Soon;Kim, Hwan-Mook;Lee, Kyung-Ae;Hong, Jin-Tae;Kim, Young-Soo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.188-197
    • /
    • 2010
  • Background: Lichen-derived glucans have been known to stimulate the functions of immune cells. However, immunostimulatory activity of glucan obtained from edible lichen, Umbilicaria esculenta, has not been reported. Thus we evaluated the phenotype and functional maturation of dendritic cells (DCs) following treatment of extracted glucan (PUE). Methods: The phenotypic and functional maturation of PUE-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. PUE-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity. Finally we detected the activation of MAPK and NF-${\kappa}B$ by immunoblot. Results: Phenotypic maturation of DCs was shown by the elevated expressions of CD40, CD80, CD86, and MHC class I/II molecules. Functional activation of DCs was proved by increased cytokine production of IL-12, IL-$1{\beta}$, TNF-${\alpha}$, and IFN-${\alpha}/{\beta}$, decreased endocytosis, and enhanced proliferation of allogenic T cells. Polymyxin B, specific inhibitor of lipopolysaccharide (LPS), did not affect PUE activity, which suggested that PUE was free of LPS contamination. As a mechanism of action, PUE increased phosphorylation of ERK, JNK, and p38 MAPKs, and enhanced nuclear translocation of NF-${\kappa}B$ p50/p65 in DCs. Conclusion: These results indicate that PUE induced DC maturation via MAPK and NF-${\kappa}B$ signaling pathways.

A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways

  • Ye, Lin;Xin, Yang;Wu, Zhi-yuan;Sun, Hai-jian;Huang, De-jian;Sun, Zhi-qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.15-26
    • /
    • 2022
  • Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Anti-Inflammatory Effect of Mangostenone F in Lipopolysaccharide-Stimulated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation

  • Cho, Byoung Ok;Ryu, Hyung Won;So, Yangkang;Lee, Chang Wook;Jin, Chang Hyun;Yook, Hong Sun;Jeong, Yong Wook;Park, Jong Chun;Jeong, Il Yun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.288-294
    • /
    • 2014
  • Mangostenone F (MF) is a natural xanthone isolated from Garcinia mangostana. However, little is known about the biological activities of MF. This study was designed to investigate the anti-inflammatory effect and underlying molecular mechanisms of MF in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MF dose-dependently inhibited the production of NO, iNOS, and pro-inflammatory cytokines (TNF-${\alpha}$, IL-6, and IL-$1{\beta}$) in LPS-stimulated RAW264.7 macrophages. Moreover, MF decreased the NF-${\kappa}B$ luciferase activity and NF-${\kappa}B$ DNA binding capacity in LPS-stimulated RAW264.7 macrophages. Furthermore, MF suppressed the NF-${\kappa}B$ activation by inhibiting the degradation of $I{\kappa}B{\alpha}$ and nuclear translocation of p65 subunit of NF-${\kappa}B$. In addition, MF attenuated the AP-1 luciferase activity and phosphorylation of ERK, JNK, and p38 MAP kinases. Taken together, these results suggest that the anti-inflammatory effect of MF is associated with the suppression of NO production and iNOS expression through the down-regulation of NF-${\kappa}B$ activation and MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

  • Lu, Yue;Jeong, Yong-Tae;Li, Xian;Kim, Mi Jin;Park, Pil-Hoon;Hwang, Seung-Lark;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.435-441
    • /
    • 2013
  • Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-${\kappa}B$ p65 and its DNA-binding activity by reducing the phosphorylation and degradation of $I{\kappa}B{\alpha}$ and the phosphorylation of $I{\kappa}B$ kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-${\kappa}B$ activation and of the MAPK pathway.

Anti-inflammatory Effects of Ponciri Fructus Extracts on Raw 264.7 Cells

  • Lee, Jin Wook;Jung, Hyuk-Sang;Sohn, Youngjoo;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.91-91
    • /
    • 2018
  • Poncirus Fructus (PF) is obtained by drying the trifoliate orange fruit belonging to the Rutaceae family. In our country of medicine, PF has been used as a treatment of indigestion, allergy and inflammation. But Mechanism and medical data for PF is insignificant. Recently, the effect of the study PF of biological activity was reported, such as anti- thrombosis, anti-bacteria, anti-virus, anti- allergic. We investigated that the effect of PF on anti-inflammatory in murine macrophage-like cell line Raw264.7 cells. Our results show that the expression level of Nitric Oxide (NO) and Matrix-metallopeptidase-9 (MMP-9) significantly decreased. Moreover, to determine the expression level of pro-inflammatory cytokines such as Tumor Necrosis Factor ($TNF-{\alpha}$) and Interleukin-6 (IL-6) and the phosphorylation pattern of signaling molecules of mitogen-activated protein kinase (MAPK) family, we performed ELISA and westren blot in Raw264.7 cells. In addition, nuclear factor-kappa B ($NF-{\kappa}B$) pathway was confirmed. PF extract inhibited the production of $TNF-{\alpha}$ and IL-6. The extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. Our results suggest that PF can be used as a potential therapeutic agent or functional food to relieve inflammation.

  • PDF

Gintonin regulates inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2

  • Kim, Mijin;Sur, Bongjun;Villa, Thea;Yun, Jaesuk;Nah, Seung Yeol;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.575-582
    • /
    • 2021
  • Background: In ginseng, there exists a glycolipoprotein complex with a special form of lipid LPAs called Gintonin. The purpose of this study is to show that Gintonin has a therapeutic effect on rheumatoid arthritis through LPA2 receptors. Methods: Fibroblast-like synoviocytes (FLS) were treated with Gintonin and stimulated with interleukin (IL)-1β. The antioxidant effect of Gintonin was measured using MitoSOX and H2DCFDA experiments. The anti-arthritic efficacy of Gintonin was examined by analyzing the expression levels of inflammatory mediators, phosphorylation of mitogen-activated protein kinase (MAPK) pathways, and translocation of nuclear factor kappa B (NF-κB)/p65 into the nucleus through western blot. Next, after treatment with LPAR2 antagonist, western blot analysis was performed to measure inflammatory mediator expression levels, and NF-κB signaling pathway. Carrageenan/kaolin-induced arthritis rat model was used. Rats were orally administered with Gintonin (25, 50, and 100 mg/kg) every day for 6 days. The knee joint thickness, squeaking score, and weight distribution ratio (WDR) were measured as the behavioral parameters. After sacrifice, H&E staining was performed for histological analysis. Results: Gintonin significantly inhibited the expression of iNOS, TNF-α, IL-6 and COX-2. Gintonin prevented NF-κB/p65 from moving into the nucleus through the JNK and ERK MAPK phosphorylation in FLS cells. However, pretreatment with an LPA2 antagonist significantly reversed these effects of Gintonin. In the arthritis rat model, Gintonin suppressed all parameters that were measured. Conclusion: This study suggests that LPA2 receptor plays a key role in mediating the anti-arthritic effects of Gintonin by modulating inflammatory mediators, the MAPK and NF-κB signaling pathways.