• 제목/요약/키워드: pB10 plasmid

검색결과 162건 처리시간 0.026초

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

Bacillus subtilis 접종이 배추 및 참깨의 생장(生長)과 토양(土壤) 미생물상(微生物相)에 미치는 영향(影響) (Effect on the Inoculation of Bacillus on the Growth of Chinese Cabbage and Sesame and on Microbial Flora in Soils)

  • 김광식;이재평;김용웅;이영환;김영일
    • 한국토양비료학회지
    • /
    • 제26권4호
    • /
    • pp.271-277
    • /
    • 1993
  • 고추와 옥수수의 근권(根圈)에서 분리(分離)하여 작물의 병원성(病原性) 사상균(絲狀菌)인 R. solani, F. oxysprum, F. solani에 대한 생육(生育) 저해력(沮害力)이 강한 B. subtilis B-4와 B-5를 분리(分離), 동정(同定)하였다. B. subtilis B-5 균주(菌株)에 plasmid pCPP4를 삽입하여 약제(藥劑) 내성(耐性)의 표식균주(標識菌株)를 조제하고 선발균주(選拔菌株)와 표식균주(標識菌株)의 생리적 특성을 비교 검토하였으며. 이들이 배추와 참깨의 생장(生長)과 토양(土壤) 미생물상(微生物相)에 미치는 영향(影響)을 조사(調査)한 결과(結果)를 요약(要約)하면 다음과 같다 1. B. subtilis B-4와 B-5 균주(菌株)는 탄소원(炭素源)으로 glucose, arabinose, surcose, fructose, lactuse, mannitol, sorbitol 등을 이용하였고 neomycine 저항성 표식균주(漂識菌株)도 선발균주(選拔菌株)와 동일한 성질(性質)을 나타내었다. 2. 길항균(拮抗菌)의 접종(接種)에 따른 배추의 발아율(發芽率)은 일반적으로 petri dish 접종시(接種時)보다 연작토양(連作土壤)에 접종(接種)했을 때 R. solani 혼합접종구(混合接種區)에서 대조구(對照區)에 비하여 모두 20~25%의 높은 발아율(發芽率) 증가(增加)를 나타냈으며, F. oxy-sporum 혼합접종구(混合接種區)에서는 대조구(對照區)에 비하여 선발균주(選拔菌株)인 B-4, B-5 균주(菌株)의 접종구(接種區)가 14% 이상(以上)의 증가(增加)를 보였다. 3. 참깨의 발아(發芽)에 미치는 영향(影響)은 petri dish 접종(接種)에서 표식균주(標識菌株) B-5NEOr(94.1%), 토양접종(土壤接種)에서 B-5(97.1%)가 가장 우수(優秀)하였고, 선발균주(選拔菌株)인 B-4, B-5 길항균(拮抗菌)의 접종구(接種區)가 대조구(對照區)에 비해 10% 이상(以上)으로 발아율(發芽率)이 향상(向上)되었다. 일반적으로 표식균주(漂識菌株)에 비해 선발균주(選拔菌株)가, 그리고 petri dish보다는 토양(土壤) 접종시(接種時)에 발아(發芽)가 향상(向上)되었다. 4. 선발균주(選拔菌株)와 표식균주(標識菌株)의 초기생육(初期生育) 촉진효과(促進效果)는 배추에서 B-5균주(菌株)와 병원성(病源性) 사상균(絲狀菌)인 F. oxysporum을 혼합(混合) 접종(接種)한 처리구(處理區)가 대조구(對照區)에 비해 신선중(新鮮重)이 66%, 초장(草長)이 23% 증가(增加)하여 우수한 생육(生育)을 나타냈으며, 참깨에서 B-5NEOr과 F. oxysporum의 혼합처리구(混合處理區)와 B-5와 R. solani의 혼합처리구(混合處理區)에서 생체중(生體重)이 대조구(對照區)에 비해 2배 이상(以上)으로 높은 향상(向上)을 보였다. 5. 표식균주(標識菌株)를 배추와 참깨의 근권(根圈)에 $1.1{\times}10^8CFU/g$ dry soil로 접종(接種)한 결과 표식균주(標識菌株)는 4주후 $10^5{\sim}10^6$으로 경시적인 감소(減少)를 보였으며, Pseudomonas속균은 $10^5$수준으로 일정하게 유지(維持)되는 경향(傾向)이었다. 그러나 사상균(絲狀菌)은 최초 $10^8$에서 4주후 $10^3$수준으로 급소히 감소(減少)하여 B. subtilis 접종(接種)으로 사상균(絲狀菌)의 생육(生育)이 현저히 저해(沮害)되는 것으로 나타났다.

  • PDF

Antibody 제작을 위한 human serine palmitoyltransferase 유전자의 발현 (Expression of Human Serine Palmitoyltransferase Genes for Antibody Development)

  • 김희숙
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.315-319
    • /
    • 2004
  • 사람의 serine palmitoyltransferase(SPT, EC 2.3.1.50)에 대한 항체를 제작하기 위하여 E. coli발현 vector인 pRset vector에 SPTLC1 및 SPTLC2 유전자를 subcloning하고 BL21 (DE3)pLys cell에 발현시켰다. 포유동물의 SPT는 원핵세포의 SPT homodimer와는 달리 SPTLC1 및 SPTLC2 2개의 sub-unit로 된 heterodimer이다. Human embryo kidney cell인 HEK293 cell의 total RNA로부터 RT-PCR을 행하여 cDNA library를 얻은 다음 SPTLC1 및 SPTLC2의 특이적인 primer 들을 이용하여 PCR을 행하였다. SPTLC1 및 SPTLC2 DNA를 hexahistidine fusion 단백질을 발현시킬 수 있는 pRset vector에 cloning하여 pRsetB/SPTLC1 및 pRsetA/SPTLC2를 얻고 염기서열을 확인하였다. 재조합 plasmid를 발현세포인 BL21 cell에 형질전환시킨 다음 ampicillin 및 chroramphenicol 배지에서 선별하여 재조합세포를 얻었다. 1 mM IPTG로서 발현을 유도하였으며 세포 단백질을 SDS-PAGE로 분리한 다음 His-tag antibody로 western blotting을 행하여 SPTLC 및 SPTLC2가 발현되었음을 확인하였다.

Complete genome sequence of bacteriocin-producing Ligilactobacillus salivarius B4311 isolated from fecal samples of broiler chicken with anti-listeria activity

  • Subin Han;Arxel G. Elnar;Chiwoong Lim;Geun-Bae Kim
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.232-236
    • /
    • 2024
  • Ligilactobacillus is a genus of Gram-positive lactobacilli commonly found in the intestinal tracts of vertebrates. It has been granted a Qualified Presumption of Safety (QPS) status from the European Food Safety Authority (EFSA). One specific strain, Ligilactobacillus salivarius B4311, was isolated from fecal samples of broiler chickens from a farm associated with Chung-Ang University (Anseong, Korea). This strain was observed to have inhibitory effects against Listeria monocytogenes. In this paper, we present the complete genome sequence of Lig. salivarius B4311. The whole genome of strain B4311 comprises 2,071,255 bp assembled into 3 contigs representing a chromosome, repA-type megaplasmid, and small plasmid. The genome contains 1,963 protein-coding sequences, 22 rRNA genes, and 78 tRNA genes, with a guanine + cytosine (GC) content of 33.1%. The megaplasmid of strain B4311 was found to contain the bacteriocin gene cluster for salivaricin P, a two-peptide bacteriocin belonging to class IIb.

Characterization and Regulation of the Gene Encoding Monothiol Glutaredoxin 3 in the Fission Yeast Schizosaccharomyces pombe

  • Moon, Jeong-Su;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.74-82
    • /
    • 2005
  • Glutaredoxins (Grxs) are thioloxidoreductases which are required for maintaining thiol/disulfide equilibrium in living cells. The Grx3 gene, which encodes one of the three monothiol Grxs in the fission yeast Schizosaccharomyces pombe, was characterized, and its transcriptional regulation studied. Genomic DNA encoding Grx3 was isolated by PCR, and a plasmid pTT3 carrying this DNA was produced. The DNA sequence has 1,267 bp, which would encode a monothiol Grx of 166 amino acids with a molecular mass of 18.3 kDa. The putative protein has 27% homology with Grx5, and contains many hydrophobic amino acid residues in its N-terminal region. S. pombe cells harboring pTT3 had increased Grx activity and enhanced survival on minimal medium plates containing aluminum (5 mM), BSO (0.05 mM), menadione (0.01 mM) or cadmium (0.2 mM). The 568 bp upstream region of Grx3 was fused into the promoterless b-galactosidase gene of the shuttle vector YEp367R to generate fusion plasmid pMJS10. Potassium chloride (KCl) and metals including aluminum and cadmium enhanced the synthesis of ${\beta}$-galactosidase from the fusion gene. The synthesis of ${\beta}$-galactosidase was also enhanced, in a Pap1-dependent manner, by fermentable carbon sources such as glucose (at low concentrations) and sucrose, but not by non-fermentable carbon sources such as ethanol and acetate. Grx3 mRNA increased in response to treatment with BSO. These observations indicate that S. pombe Grx3 is involved in the response to stress, and is regulated by stress.

Purification and Characterization of the Bacteriocin Thuricin Bn1 Produced by Bacillus thuringiensis subsp. kurstaki Bn1 Isolated from a Hazelnut Pest

  • Ugras, Serpil;Sezen, Kazim;Kati, Hatice;Demirbag, Zihni
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.167-176
    • /
    • 2013
  • A novel bioactive molecule produced by Bacillus thuringiensis subsp. kurstaki Bn1 (Bt-Bn1), isolated from a common pest of hazelnut, Balaninus nucum L. (Coleoptera: Curculionidae), was determined, purified, and characterized in this study. The Bt-Bn1 strain was investigated for antibacterial activity with an agar spot assay and well diffusion assay against B. cereus, B. weinhenstephenensis, L. monocytogenes, P. savastanoi, P. syringae, P. lemoignei, and many other B. thuringiensis strains. The production of bioactive molecule was determined at the early logarithmic phase in the growth cycle of strain Bt-Bn1 and its production continued until the beginning of the stationary phase. The mode of action of this molecule displayed bacteriocidal or bacteriolytic effect depending on the concentration. The bioactive molecule was purified 78-fold from the bacteria supernatant with ammonium sulfate precipitation, dialysis, ultrafiltration, gel filtration chromatography, and HPLC, respectively. The molecular mass of this molecule was estimated via SDS-PAGE and confirmed by the ESI-TOFMS as 3,139 Da. The bioactive molecule was also determined to be a heat-stable, pH-stable (range 6-8), and proteinase K sensitive antibacterial peptide, similar to bacteriocins. Based on all characteristics determined in this study, the purified bacteriocin was named as thuricin Bn1 because of the similarities to the previously identified thuricin-like bacteriocin produced by the various B. thuringiensis strains. Plasmid elution studies showed that gene responsible for the production of thuricin Bn1 is located on the chromosome of Bt-Bn1. Therefore, it is a novel bacteriocin and the first recorded one produced by an insect originated bacterium. It has potential usage for the control of many different pathogenic and spoilage bacteria in the food industry, agriculture, and various other areas.

Bacillus stearothermophilus로부터 $\alpha$-L-Arabinofuranosidase 유전자의 클로닝 및 Escherichia coli에서의 발현 (Molecular Colning and Ewpression of the $\alpha$-L-Arabinofuranosidase Gene of Bacillus stearothermophilus in Escherichia coli)

  • 엄수정;김희선;조쌍구;최용진
    • 한국미생물·생명공학회지
    • /
    • 제22권6호
    • /
    • pp.607-613
    • /
    • 1994
  • The Bacillus stearothermophilus arfI gene encoding a-arabinofuranosidase was isolated from the genomic library, cloned into pBR322, and subsequently transferred into the Escherichia coli HB101. The recombinant E. coli was selected from approximately 10,000 transformants screened by making use of its ability to produce a yellow pigment around the colony on the selective medium supplemented with p-nitrophenyl-$\alpha$-L-arabinofuranoside (pNPAf), a chromogenic substrate. The functional clone was found to harbor a recombinant plasmid, pKMG11 with an insertion of about 5 kb derived from the B. stearothermophilus chromosomal DNA. Identity of the arfI gene on the insert DNA was confirmed by a zymogram with 4-methylumbelliferyl-$\alpha$-L-arabinofuranoside as the enzyme substrate. The $\alpha$-arabinofuranosidase from the recombinant E. coli strain showed very high substrate specificity; the enzyme displayed high activity only with pNPAf among many other p- or $o$-nitrophenyl derivatives of several sugars, and acted only on arabinoxylan among various natural arabinose containing polysaccharides tested.

  • PDF

Molecular Mechanism of Copper Resistance in Pseudomonas syringae pv. tomato.

  • Cha, Jae-Soon;Donald A. Cooksey
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1995년도 Proceedings of special lectures on Molecular Biological Approaches to Plant Disease National Agricultural Science and Technology Institute Suwon, Korea
    • /
    • pp.97-117
    • /
    • 1995
  • Copper resistance in Pseudomonas syringae pv. tomato is determined by copper-resistance operon (cop) on a highly conserved 35 kilobase plasmid. Copper-resistant strains of Pseudomonas syringae containing the cop operon accumulate copper and develop blue clonies on copper-containing media. The protein products of the copper-resistance operon were characterized to provide an understanding of the copper-resistance mechanism and its relationship to copper accumulation. The Cop proteins CopA (72 kDa), CopB (39 kDa), and CopC (12 kDa) were produced only under copper induction. CopA and CopC were periplasmic proteins and CopB was an outer membrane protein. Leader peptide sequences of CopA, CopB, and CopC were confirmed by amino-terminal peptide sequencing. CopA, CopB, and CopC were purified from strain PT23.2, and their copper contents were determined. One molecule of CopA bound 10.9${\pm}$1.2 atoms of copper and one molecule of CopC bound 0.6${\pm}$0.1 atom of copper. P. syringae cells containing copCD or copBCD cloned behind the lac promoter were hypersensitive to copper. The CopD (32 kDa), a probable inner membrane protein, function in copper uptake with CopC. The Cop proteins apparently mediate sequestration of copper outside of the cytoplasm as a copper-resistance mechanism.

  • PDF

Evaluation of systemic and mucosal immune responses in mice administered with novel recombinant Salmonella vaccines for avian pathogenic Esherichia coli

  • Oh, In-Gyeong;Lee, John Hwa
    • 대한수의학회지
    • /
    • 제53권4호
    • /
    • pp.199-205
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) is a causative agent for a number of extra intestinal diseases and account for significant losses to the poultry industry. Since protective immunity against APEC is largely directed to virulence antigens, we have individually expressed four different viulence antigens, papA, papG, IutA, and CS31A, using an attenuated Salmonella Typhimurium and a plasmid pBB244. Following oral immunization of mice with combination of two or four of these strains, serum IgG and mucosal IgA responses were elicited against each antigen represented in the mixture. The antigen-specific mucosal IgA responses were significantly higher in the group of mice immunized with the heat-labile Escherichia coli enterotoxin B subunit (LTB) strain than those in the group of mice immunized without the LTB strain. While, there was no significant difference between these two groups in antigen-specific serum IgG responses. The results showed that LTB could act as mucosal immune adjuvant. To assess the nature of immunity, the distribution of antigen-specific IgG isotypes was analyzed. All groups promoted Th1-type immunity as determined by the IgG2a/IgG1 ratio. Thus, our findings provided evidence that immunization with a combination of several vaccine strains is one of the strategies of developing effective vaccines against APEC.

Inhibition of p90RSK activation sensitizes triple-negative breast cancer cells to cisplatin by inhibiting proliferation, migration and EMT

  • Jin, Yujin;Huynh, Diem Thi Ngoc;Kang, Keon Wook;Myung, Chang-Seon;Heo, Kyung-Sun
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.706-711
    • /
    • 2019
  • Cisplatin (Cis-DDP) is one of the most widely used anti-cancer drugs. It is applicable to many types of cancer, including lung, bladder, and breast cancer. However, its use is now limited because of drug resistance. p90 ribosomal S6 kinase (p90RSK) is one of the downstream effectors in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway and high expression of p90RSK is observed in human breast cancer tissues. Therefore, we investigated the role of p90RSK in the Cis-DDP resistance-related signaling pathway and epithelial-mesenchymal transition (EMT) in breast cancer cells. First, we discovered that MDA-MB-231 cells exhibited more Cis-DDP resistance than other breast cancer cells, including MCF-7 and BT549 cells. Cis-DDP increased p90RSK activation, whereas the inactivation of p90RSK using a small interfering RNA (siRNA) or dominant-negative kinase mutant plasmid overexpression significantly reduced Cis-DDP-induced cell proliferation and migration via the inhibition of matrix metallopeptidase (MMP)2 and MMP9 in MDA-MB-231 cells. In addition, p90RSK activation was involved in EMT via the upregulation of mRNA expression, including that of Snail, Twist, ZEB1, N-cadherin, and vimentin. We also investigated NF-κB, the upstream regulator of EMT markers, and discovered that Cis-DDP treatment led to NF-κB translocation in the nucleus as well as its promoter activity. Our results suggest that targeting p90RSK would be a good strategy to increase Cis-DDP sensitivity in triple-negative breast cancers.