• Title/Summary/Keyword: pAtC58

Search Result 784, Processing Time 0.029 seconds

Walnut phenolic extracts reduce telomere length and telomerase activity in a colon cancer stem cell model

  • Shin, Phil-Kyung;Zoh, Yoonchae;Choi, Jina;Kim, Myung-Sunny;Kim, Yuri;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Telomeres are located at the chromosomal ends and progressively shortened during each cell cycle. Telomerase, which is regulated by hTERT and c-MYC, maintains telomeric DNA sequences. Especially, telomerase is active in cancer and stem cells to maintain telomere length for replicative immortality. Recently we reported that walnut phenolic extract (WPE) can reduce cell viability in a colon cancer stem cell (CSC) model. We, therefore, investigated the effect of WPE on telomere maintenance in the same model. MATERIALS AND METHODS: $CD133^+CD44^+$ cells from HCT116, a human colon cancer cell line, were sorted by Fluorescence-activated cell sorting (FACS) and treated with WPE at the concentrations of 0, 10, 20, and $40{\mu}g/mL$ for 6 days. Telomere lengths were assessed by quantitative real-time PCR (qRT-PCR) using telomere specific primers and DNA extracted from the cells, which was further adjusted with single-copy gene and reference DNA ($ddC_t$). Telomerase activity was also measured by qRT-PCR after incubating the PCR mixture with cell protein extracts, which was adjusted with reference DNA ($dC_t$). Transcriptions of hTERT and c-MYC were determined using conventional RT-PCR. RESULTS: Telomere length of WPE-treated cells was significantly decreased in a dose-dependent manner ($5.16{\pm}0.13$ at $0{\mu}g/mL$, $4.79{\pm}0.12$ at $10{\mu}g/mL$, $3.24{\pm}0.08$ at $20{\mu}g/mL$ and $3.99{\pm}0.09$ at $40{\mu}g/mL$; P = 0.0276). Telomerase activities concurrently decreased with telomere length ($1.47{\pm}0.04$, $1.09{\pm}0.01$, $0.76{\pm}0.08$, and $0.88{\pm}0.06$; P = 0.0067). There was a positive correlation between telomere length and telomerase activity (r = 0.9090; P < 0.0001). Transcriptions of both hTERT and c-MYC were also significantly decreased in the same manner. CONCLUSION: In the present cell culture model, WPE reduced telomere maintenance, which may provide a mechanistic link to the effect of walnuts on the viability of colon CSCs.

Practical Utilization of Entomopathogenic Nematodes, Steinernema carpocapsae Pocheon Strain and Heterorhabditis bacteriophora Hamyang Strain for Control of Chestnut Insect Pests (밤 종실해충 방제를 위한 곤충병원성 선충, Steinernema carpocapsae 포천 계통과 Heterorhabditis bacteriophora함양 계통의 실용적 활용)

  • 추호렬;김형환;이동운;이상명;박선호;추영무;김종갑
    • Korean journal of applied entomology
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 2001
  • The entomopathogenic nematodes, Steinernema carpocapsae Pocheon strain (ScP) and Heterorhabditis bacteriophora Hamyang strain (HbH) were evaluated against chestnut insect pests, The farmers'handling methods of chestnuts were taken into consideration to develop practical biological control with entomopathogenic nematodes . The major insect pests found with chestnuts were Curculio sikkimensis, Seichocrocis punctiferalis, and Cydia kurokoi. Although individual chestnut contained one species of insect was 58% representing 18% by C. sikkimensis, 27.7% by D. punctiferalis and 12.3% by C. kurokoi. The percentage of co-infection of C. sikkimensis with D. punctiferalis was 3.3%, C. sikkimensis with C. kurokoi 5.0%, D. punctiferalis with C. kurokoi 7.7%, and C. sikkimensis with D. punctiferalis and C. kurokoi 5.0%. The entomopathogenic nematodes, ScP and HbH were effective against all the species of chestnut insect pests. The $LC_{50}$ of ScP was 14.6 for C. sikkimensis, 4.6 for D. punctiferalis, and 5.6 for C. kurokoi and that of HbH was 49.2 for C. sikkimensis, 5.8 for D. punctiferalis, and 13.9 for C. kurokoi, respectively. When ScP was applied into pot including harvested chestnuts at the rate of 4,813 infective juveniles (Ijs)/pot $(=1\times10^9/ha)$, mortality of C. sikkimensis, D. punctiferalis, and C. kurokoi was 85.3%, 96.9%, and 68.1%, respectively. The mortality of C. sikkimensis, D. punctiferalis, and C. kurokoi was 60.73%, 96.5%, and 66.8%, respectively when HbH was applied at the same rate. Combination of two nematode species produced similar effects and insects were more infected by ScP than HbH. When chestnuts were soaked in the suspension of ScP at the rate of 300, 3,000, and 30,000 Ijs for 10 minutes or 30 minutes, mortalities of all chestnut insects were high irrespective of soaking time, concentration , and nematode species.

  • PDF

${\gamma}$-Aminobutyric Acid Production and Glutamate Decarboxylase Activity of Lactobacillus sakei OPK2-59 Isolated from Kimchi (김치유래 Lactobacillus sakei OPK2-59의 ${\gamma}$-Aminobutyric Acid 생성 및 Glutamate Decarboxylase 활성)

  • Yu, Jin-Ju;Oh, Suk-Heung
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.316-322
    • /
    • 2011
  • Lactobacillus sakei OPK2-59 isolated from kimchi was found to have ${\gamma}$-aminobutyric acid (GABA) producing ability and glutamate decarboxylase (GAD) activity. When the Lactobacillus sakei OPK2-59 was cultured in MRS broth with 59.13 mM and 177.40 mM monosodium glutamate (MSG), the optimum temperature range and pH for growth were $25-37^{\circ}C$ and pH 6.5, respectively. GABA conversion rates in MRS broth with 59.13 mM and 177.40 mM MSG were 99.58% and 31.00%, respectively at $25^{\circ}C$ and 48 h of cultivation. By using the cell free extract of Lactobacillus sakei OPK2-59, MSG was converted to GABA and the conversion rate was 78.51% at $30^{\circ}C$, pH 5. Conversion of MSG to GABA was enhanced by adding salts such as $CaCl_2$, $FeCl_3$, $MgCl_2$. These data suggest that the ability of Lactobacillus sakei OPK2-59 to produce GABA results from the activity of GAD in the cells and GABA conversion by the cell extract containing GAD can be enhanced by $CaCl_2$, $FeCl_3$, $MgCl_2$.

Preparation of Porous Boehmite Gel from Waste AlCl3 Solution (AlCl3 폐액으로부터 다공성 Boehmite Gel의 제조)

  • Park, Byung-Ki;Lee, Hak-Soo;Kim, Young-Ho;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.864-871
    • /
    • 2004
  • Porous pseudo-boehmite gel was prepared through the aging process of amorphous aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and AlCl$_3$ solution. In this study, the synthesis method was studied on porous pseudo-boehmite gel having maximum pore volume, as being investigated the changes of crystal structure, infrared rays absorption spectrum, BET surface area and pore structure when the hydrolysis reaction is controlled in the range of pH 7.6~11.6 and the aging process is hold up for 2~24 h at 60~10$0^{\circ}C$. We could find that the gel precipitates deposited in in range of pH 7.6~9.6 were developed into porous pseudo-boehmite which surface area was 250~357 $m^2$/g, pore volume was 0.4~0.7 cc/g and average pore size was 58~l14$\AA$. However, the gel precipitates deposited in range of pH 10.6~11.6 were developed into bayerite which pore volume was very little.

Weight Loss and Nutrient Dynamics during Leaf Litter Decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak National Park

  • NamGung, Jeong;Han, A-Reum;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.291-295
    • /
    • 2008
  • Weight loss and nutrient dynamics of oak and pine leaf litter during decomposition were investigated from December 2005 through June 2008 at Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. The decay constant (k) of oak and pine leaf litter were 0.314 and 0.217, respectively. After 30 months decomposition, remaining weight of oak and pine leaf litter was 45.5% and 58.1%, respectively. Initial C/N ratio of oak and pine leaf litter was 53.4 and 153.0, respectively. Carbon % of initial oak and pine leaf litter was similar with each other; however, nitrogen content of initial oak leaf litter (0.85%) was greater than that of initial pine leaf litter (0.33%). N and P concentration in both decomposing leaf litter increased significantly during decomposition. There was no net N and P mineralization period in decomposing pine leaf litter. K, Ca and Mg concentration in both decomposing leaf litter showed different pattern with those of N and P. After 30 months decomposition, remaining nutrients in oak and pine leaf litter were 97.7 and 216.2% for N, 123.2 and 216.5% for P, 39.3 and 44.8% for K, 47.9 and 40.6% for Ca, 30.7 and 51.2% for Mg, respectively.

Chromaticity Analysis of Curcumin Extracted from Curcuma and Turmeric: Optimization Using Response Surface Methodology (강황과 울금으로부터 추출된 커큐민의 색도분석 : 반응표면분석법을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.421-428
    • /
    • 2019
  • This paper describes a methode to extract yellow pigment from curcuma and turmeric containing natural color curcumin whose target color indexes of L, a, and b were 87.0 7.43, and 88.2, respectively. The pH range and extraction temperature used for the reaction surface analysis method were from pH 3 to pH 7 and between 40 and $70^{\circ}C$, respectively for both natural products. A central synthesis planning model combined with the method was used to obtain optimal extraction conditions to produce the color close to target. Results and regression equations show that the color space and difference of curcuma and turmeric have the greatest influence on the value. In the case of curcuma, the optimum conditions to satisfy all of the response theoretical values of color coordinates of L (74.67), a (5.69), and b (70.08) were at the pH and temperature of 3.43 and $54.8^{\circ}C$, respectively. The experimentally obtained L, a, and b, values under optimal conditions were 72.92, 5.32, and 72.17, respectively. For the case of turmeric, theoretical numerical color coordinates of L, a, and b, under the pH of 5.22 and temperature of $50.4^{\circ}C$ were 82.02, 7.43, and 72.86 respectively. Whereas, the experiment results were L (81.85), a (5.39), and b (71.58). Both cases showed an error range within 1%. Therefore, it is possible to obtain a low error rate when applying the central synthesis planning model to the reaction surface analysis method as an optimization process of the dye extraction of natural raw materials.

Isolation and Identification of Klebsiella oxytoca C302 and Its Degradation of Aromatic Hydrocarbons (Klebsiella oxytoca C302의 분리 동정 및 방향족 탄화수소물질의 분해특성)

  • 김기필;이정순;박송이;이문수;배경숙;김치경
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.58-63
    • /
    • 2000
  • A bacterial isolate capable of degrading benzoate was selected from wastewater of Yocheon industrial complex and examined its biochemical characteristics and fatty acid composition. The isolate was identified as Klebsiella oxytoca strain C302. The strain C3O2 degraded catechol, protocatechuate, and 4-hydroxybenzoate as well as benzoate. The strain grew on and degraded 0.5 to 1.0 mM catechol most actively in MM2 medium at pH 7.0 and $30^{\circ}C$.

  • PDF

Purification and Properties of Endo-$\beta$-1, 4-glucanase from Thermophilic Clostridium thermocellum (고온성 Clostridium thermocellum이 생산하는 Endo-$\beta$-1, 4-glucanase의 정제 및 성질)

  • 김욱한;하지홍;정기택;이용현
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.157-164
    • /
    • 1987
  • A new endo-$\beta$-1, 4-glucanase was purified from the culture filtrate of thermophilic anaerobic Clostridium thermocellum. The purification procedure included two steps of ion exchange chromatography with DEAD-Sephadex A-50 and gel filtration chromatography with Sephadex G-75. Even though the 56 fold increase in CMCase specific activity was obtained, the actually recovered enzyme activity was relatively lower level of 0.7%. Judging from the two bands in SDS-polyacrylamide gel electrophoresis, the endo-$\beta$-1, 4-glucanase consists of two subunits whose M.W. are 38,000 and 58,000, respectively. The optimum pH and temperature were determined to be 5.0 and $65^{\circ}C$, respectively. The enzyme was stable up to $70^{\circ}C$, but inactivated at $80^{\circ}C$. The kinetic parameters of the separated fraction were also determined. The purified enzyme did not show any significant hydrolytic activity against the highly ordered crystalline cellulose as well as filter paper.

  • PDF

Effects of Extraction Method on the Thermal Oxidative Stability of Seed Oils from Camellia sinensis L. (녹차 종실유의 제조법에 따른 열산화 안정성 비교)

  • Kim, Mi-Sun;Lee, Jae-Hwan;Kim, Myong-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2010
  • Camellia sinensis L. (green tea) seed oils were prepared by roasting at $213^{\circ}C$ and pressing (RP), pressing (P), and nhexane extraction (H). The physico-chemical properties of the RP, P, and H samples, including fatty acid composition, color, and sensory characteristics were analyzed. RP, P and H samples were thermally oxidized at $180^{\circ}C$, and oxidative stability was determined by DPPH, CDA, and p-AV at 0, 20, 40, 60, and 80 min. Compared to the P and H samples, RP resulted in significantly higher thermal oxidative stability according to the DPPH, CDA, and p-AV results (p<0.05). The ratio of unsaturated fatty acids to saturated fatty acids among RP, P, and H samples were significantly different (p<0.05). The oleic acid and linoleic acid contents in green tea seed oils were 58 and 23%, respectively. Hunter's color value of lightness (L) for the RP, P, and H samples was not significant. Redness (a) of RP was $3.47{\pm}0.119$ and yellowness (b) of H was $60.10{\pm}2.483$, which were significantly different. Compared to RP samples, H and P samples had the highest color and off-odor values in the sensory evaluation. RP samples showed the highest taste value and were significant overall (p<0.05). The thermal stability of RP extraction was more stable than any other method. Camellia sinensis L. seed oil extracted by RP had better sensory characteristics than other edible oils, including soybean oil, grape seed oil, and extra virgin olive oil.

A Study on Artificiality Salivary pH and Sugar Fermentation Test of Caries Potentiality Foods (우식유발식품에 의한 인공타액내 pH 변화와 당 분해 효소 활성에 관한 연구)

  • Ji, Yun-Jeong;Park, Su-Kyung
    • Journal of dental hygiene science
    • /
    • v.12 no.4
    • /
    • pp.303-309
    • /
    • 2012
  • This study was designed to provide basic data for developing a standardized caries potentiality index to help to choose snack foods with a low score on the index by investigating adolescents' snack intakes and measuring them in total saccharinity, pH, and acidogenic potential and glucosidase activity of Streptococcus mutans (S. mutans). Total 28 snack foods were selected and measured for total saccharinity (Pocket refractometer PAL-1, ATAGO) and pH with a pH meter (Mentor, Seoul, Korea). Artificial saliva was added to each sample. The experiment group was administered with S. mutans (ATCC 3692), cultured in a constant temperature incubator at $37^{\circ}C$, and measured for pH changes over five times including after 10 minutes, 30 minutes, 1 hour, and 24 hours. Each sample of 0.3 ml was added to tubes containing sucrose, galactose, or glucose to measure the glucosidase activity of S. mutans. They were then observed for glucosidase activity with colorimetry after 24 hours of culture in a constant temperature incubator at $37^{\circ}C$. The mean pH by the acidogenic potential of S. mutans was pH 5.33. The experiment group dropped in pH more than the control group due to the increasing acidogenic potential of S. mutans by glucosidase activity, recording pH 5.27 after 10 minutes, pH 5.21 after 30 minutes, pH 5.15 after 1 hour, and pH 4.80 after 24 hours. The observation results of glucosidase activity of S. mutans with colorimetry show that most of the samples were positive in orange and yellow with glucose, sucrose, and glactose recording activity of 78.58%, 75%, and 71.42%, respectively.