• Title/Summary/Keyword: p53 activation

Search Result 321, Processing Time 0.029 seconds

The Extract from Artemisia annua Linné. Induces p53-independent Apoptosis through Mitochondrial Signaling Pathway in A549 Lung Cancer Cells (A549 폐암세포에서 미토콘드리아 경로를 통한 개똥쑥 추출물의 apoptosis 유도 효과)

  • Kim, Bo-Min;Kim, Guen-Tae;Kim, Eun-Ji;Lim, Eun-Gyeong;Kim, Sang-Yong;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.887-894
    • /
    • 2016
  • The extract from Artemisia annuain L.(AAE) is known as a medicinal herb that is effective against cancer. Apoptosis is the process of programmed cell death, and mitochondria are known to play a central role in cell death control. In this study, we evaluated the p53-independent apoptosis of extract of AAE through downregulation of Bcl-2 and the mitochondrial pathway in A549 (lung cancer cells). AAE may exert cancer cell apoptosis through regulating p-Akt, Cox-2, p53 and mitochondria-mediated apoptotic proteins. p-Akt/cox-2 is known to play an important role in cell proliferation and cell survival. The Bcl-2 pro-apoptotic proteins (such as Bax, Bak and Bim) mediate the permeabilization of the mitochondrial outer membrane. Treatment of AAE reduces p-Akt, p-Mdm2, cox-2 and anti-apoptotic proteins (such as Bcl-2), while tumor suppressor p53 and pro-apoptotic proteins. Activation of Bax/Bak releases cytochrome c from mitochondria to the cytosol to activate a caspase. Caspase-3 is the major effector caspase associated with apoptotic pathways. Caspase-3 generally exists in cytoplasm in the form of a pro-enzyme. In the initiation stage of apoptosis, caspase-3 is activated by proteolytic cleavage and activated caspase-3 cleaves poly (ADP-ribose) polymerase (PARP). We treated Pifithrin-α (p53 inhibitor) and Celecoxib (Cox-2 inhibitor) to learn the relationship between the signal transduction of proteins associated with apoptosis. These results suggest that AAE induces apoptosis through a p53-independent pathway in A549.

The Signaling of UV-induced Apoptosis in Melanocytes

  • Kim, Dong-Seok;Kim, Sook--Young;Park, Kyoung-Chan
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.217-220
    • /
    • 2002
  • Ultraviolet B (UVB) radiation may activate or deteriorate cultured human epidermal melanocytes, depending on the doses and culture conditions. In this study, we examined whether apoptosis of melanocytes can be induced by physiologic doses of UVB irradiation. PI staining for DNA condensation and flow cytometric analyses demonstrated the apoptotic cell death of melanocytes after UVB irradiation. The level of p53 and Bax revealed a dose-dependent increase with increasing dose of UVB, but the level of Bcl-2 remained unchanged. Confocal microscopic examination showed that Bax moved trom a diffuse to a punctate distribution after UVB irradiation. However, there were no changes in the pattern of Bcl-2. We next examined the downstream targets of apoptosis. Our results showed that a precursor form of caspase-3 disappeared with increasing doses of UVB. We also observed cleavage of poly(ADP-ribose) polymerase (PARP) after UVB irradiation. In addition, UVB irradiation resulted in a remarkable activation of c-Jun N-terminal kinase (JNK). These results indicate that UVB may induce apoptosis via JNK activation in human melanocytes.

  • PDF

Gartanin enhances TRAIL-mediated liver cancer cell death through DR5 upregulation and autophagy activation

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.53-59
    • /
    • 2023
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has no effect on normal cells, but selectively can induce apoptosis in tumor cells. Gartanin, a xanthone compound in mangosteen, has been shown to inhibit cancer cell growth by arresting the cell cycle and inducing autophage. In this study, we revealed that gartanin can sensitize TRAIL-induced human liver cancer cell death. We also found that gartanin enhances DR5 expression, a death receptor for TRAIL. This effect appears to be related to CHOP activation associated with the response of endoplasmic reticulum stress. Gartanin treatment also inhibited p62 protein expression and cleaved LC3 to activate autophagy flux, which is related with TRAIL-induced cell death. Pretreatment with autophagy flux inhibitor, LY294002, inhibited gartanin-induced DR5 expression. In summary, our results reveal that the combined treatment of gartanin and TRAIL can be a valuable tool for cancer treatment.

In Vitro Anti-Neuroblastoma Activity of Thymoquinone Against Neuro-2a Cells via Cell-cycle Arrest

  • Paramasivam, Arumugam;Raghunandhakumar, Subramanian;Priyadharsini, Jayaseelan Vijayashree;Jayaraman, Gopalswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8313-8319
    • /
    • 2016
  • We have recently shown that thymoquinone (TQ) has a potent cytotoxic effect and induces apoptosis via caspase-3 activation with down-regulation of XIAP in mouse neuroblastoma (Neuro-2a) cells. Interestingly, our results showed that TQ was significantly more cytotoxic towards Neuro-2a cells when compared with primary normal neuronal cells. In this study, the effects of TQ on cell-cycle regulation and the mechanisms that contribute to this effect were investigated using Neuro-2a cells. Cell-cycle analysis performed by flow cytometry revealed cell-cycle arrest at G2/M phase and a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Moreover, TQ increased the expression of p53, p21 mRNA and protein levels, whereas it decreased the protein expression of PCNA, cyclin B1 and Cdc2 in a dose-dependent manner. Our finding suggests that TQ could suppress cell growth and cell survival via arresting the cell-cycle in the G2/M phase and inducing apoptosis of neuroblastoma cells.

Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors

  • Jeong, Jin-Young;Kweon, Hae-Jin;Suh, Byung-Chang
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.322-329
    • /
    • 2016
  • Voltage-gated $Ca^{2+}$ ($Ca_V$) channels are dynamically modulated by Gprotein-coupled receptors (GPCR). The $M_1$ muscarinic receptor stimulation is known to enhance $Ca_V2.3$ channel gating through the activation of protein kinase C (PKC). Here, we found that $M_1$ receptors also inhibit $Ca_V2.3$ currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated $Ca_V2.3$ currents by ~two-fold. After the PMA-induced potentiation, stimulation of $M_1$ receptors decreased the $Ca_V2.3$ currents by $52{\pm}8%$. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) is responsible for the muscarinic suppression of $Ca_V2.3$ currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of $PI(4,5)P_2$ to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed $Ca_V2.3$ currents, by $53{\pm}3%$. Next, dephosphorylation of both PI(4)P and $PI(4,5)P_2$ to PI by PJ translocation further decreased the current by up to $66{\pm}3%$. The results suggest that $Ca_V2.3$ currents are modulated by the $M_1$ receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane $PI(4,5)P_2$. Our results also suggest that there is rapid turnover between PI(4)P and $PI(4,5)P_2$ in the plasma membrane.

Hematologic Changes and Factors Related to Postoperative Hemorrhage Following Cardiopulmonary Bypass (체외순환에 따른 혈액학적 변화와 술후 출혈에 관계하는 인자에 관한 연구)

  • 김하늘루;황윤호;최석철;최국렬;김승우;조광현
    • Journal of Chest Surgery
    • /
    • v.31 no.10
    • /
    • pp.952-963
    • /
    • 1998
  • Background: Cardiopulmonary bypass(CPB)-induced hemostatic defects may result increased possibility of excessive hemorrhage and additional multiple transfusion reactions or reoperation. Particularly, fibrinolytic activation and decreased platelet count and function by CPB were proposed as a predictor of hemorrhage during postoperative periods in several reports. Materials and methods: Present study, which was conducted in 20 adult patients undergoing CPB, was prospectively designed to examine the hematologic changes, including fibrinolytic activation during and after CPB and to clarify the relationships between these changes and the magnitude of the postoperative nonsurgical blood loss. The serial blood samples for measurment of hematologic parameters were taken during operation and postoperative periods. Blood loss was respectively counted via thoracic catheter drainage at postoperative 3, 6, 12, 24, 48 hours and total period. Results: The results were obtained as follows:Platelet count rapidly declined following CPB(p<0.01), which its decreasing rate was an inverse proportion to total bypass time(TBT, r=0.55, p=0.01), And platelet count in postoperative 7th day was barely near to its control value. Fibrinogen degradating product(FDP) and D-dimer level significantly increased during CPB(p<0.0001, p<0.0001, respectively), and both of fibrinogen and plasminogen concentration correlatively decreased during CPB(r=0.57, p<0.01), implying activation of fibrinolytic system. Postoperative bleeding time (BT), postoperative activated partial thromboplastin time(aPTT) and postoperative prothrombin time (PT) were significantly prolonged as compare with each control value (p=0.05, p<0.0001, p<0.0001, respectively). Total blood loss was positively correlated with patient's age, aortic clamping time (ACT) and TBT, while there was negative correlation between platelet count and blood loss at pre-CPB, CPB-off and the 1st postoperative day, and in some periods. Postoperative aPTT and postoperative PTwere positively related to postoperative 6 hr and 48 hr blood loss(r=0.53, p=0.02; r=0.43, p=0.05) but not to total blood loss, whereas there was no relationship between postoperative BT and blood loss at any period. Conclusions: These observations suggest that CPB results various hematologic changes, including fibrinolytic activation and severe reduction in platelet count. Diverse factors such as age, platelet count, ACT, TBT and postoperative aPTT and PT may magnify the postoperative bleeding. This study will be a basic reference in understanding CPB-induced hemostatic injuries and in decreasing the postoperative hemorrhage

  • PDF

Involvement of Cdk Inhibitor p21(WIP1/CIP1) in G2/M Arrest of Human Myeloid Leukemia U937 Cells by N-Methyl-N'-Nitro-N-Nitrosoguanidine (N-methyl-N'-nitro-N-nitrosoguanidine에 의한 인체백혈병세포의 G2/M arrest 유발에서 Cdk inhibitor p21(WIP1/CIP1)의 관련성)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, to elucidate the further mechanisms of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced growth arrest, we investigated the effect of MNNG on cell cycle and proliferation in U937 cells, a p53-null human myeloid leukemia cell line. It was found that MNNG causes an arrest at the G2/M phase of the cell cycle and induces apoptosis, which is closely correlated to inhibition of cyclin B1 and cyelin-dependent kinase (Cdk) 2-associated kinase activities. MNNG treatment in. creased protein and mRNA levels of the Cdk inhibitor p21(WAF1/CIP1), and activated the reporter construct of a p21 promoter. By using p21 promoter deletion constructs, the MNNG-responsive element was mapped to a region between 113 and 61 relative to the transcription start site. These data indicate that in U937 cells MNNG can circumvent the loss of wild-type p53 function and induce critical downstream regulatory events leading to transcriptional activation of p21. Present results indicate that the p53-independent up-regulation of p21 by MNNG is likely responsible for the inhibition of cyclin/Cdk complex kinase activity rather than the down-regulation of cyclins and Cdks expression. These novel phenomena have not been previously described and provide important new insights into the possible biological effects of MNNG.

A Study on Small Punch-Creep Test Using Finite Element Analysis II (유한요소해석을 이용한 소형펀치-크리프 시험에 관한 연구 (II) - SP-Creep 시험과 일축 크리프 시험의 상관성을 중심으로 -)

  • Lee, Song-In;Kwon, Il-Hyun;Kim, Yon-Jig;Ahn, Byung-Guk;Ahn, Haeng-Keun;Baek, Seung-Se;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.111-116
    • /
    • 2001
  • Small punch-creep(SP-Creep) test technique has been applied for evaluating the creep characteristics for high temperature materials. However, in order to evaluate the damage and predict the remaining life, it is necessary to establish a quantitative correlation between SP-Creep and uniaxial-creep test results. This paper presents analytical and experimental results of useful correlation between SP-Creep and uniaxial-creep properties for 9Cr1MoVNb steel at $600{\sim}650^{\circ}C$ in terms of stress(load) and activation energy during creep deformation. Especially, the activation energy obtained from SP-Creep test is linearly related to that from uniaxial-creep test at $650^{\circ}C$ as follows: $Q_{sp-p}{\fallingdotseq}1.37\;Q_{TEN},\;Q_{sp-{\sigma}}{\fallingdotseq}1.53\;Q_{TEN}$.

  • PDF

Effect of Progesterone on Expression of Prostaglandin Synthases and Plasminogen Activator in Bovine Endometrium during Estrous Cycle (발정주기의 소 자궁내막에서 Progesterone이 Prostaglandin 합성효소와 Plasminogen Activator 발현에 미치는 영향)

  • Choi, Su-Bin;Hwangbo, Yong;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • This study was to investigate effect of progesterone ($P_4$) on prostaglandin (PG) synthases and plasminogen activators (PAs) system in bovine endometrium during estrous cycle. Endometrium tissues were collected from bovine uterus on follicular and luteal phase and were incubated with culture medium containing 0 (Control), 0.2, 2, 20 and 200 ng/ml $P_4$ for 24 h. The $PGF_{2{\alpha}}$ synthase (PGFS), $PGE_2$ synthase (PGES), cyclooxygenase-2 (COX-2), urokinase PA (uPA), and PA inhibitors 1 (PAI-1) mRNA in bovine endometrium were analyzed using reverse transcription PCR and PA activity was measured using spectrophotometry. In results, COX-2 was higher at 2 ng/ml $P_4$ group than control group in luteal phase (p<0.05), but, it did not change in follicular phase. Contrastively, PGES was significantly increased in 2 ng/ml $P_4$ group compared to control group in follicular phase, but there were no significant differ among the treatments in luteal phase. uPA was no significant difference between $P_4$ treatment groups and control group in both of different phase. PAI-1 was decreased in 20 ng/ml $P_4$ group compared to control group in follicular phase (p<0.05). PA activity was decreased in 2 ng/ml $P_4$ group compared to other groups in follicular and luteal phase (p<0.05). In conclusion, we suggest that $P_4$ may influence to translation and post-translation process of PG production and PA activation in bovine endometrium.

Fermented Acanthopanax koreanum Root Extract Reduces UVB- and H2O2-Induced Senescence in Human Skin Fibroblast Cells

  • Park, Min-Ja;Bae, Young-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1224-1233
    • /
    • 2016
  • The present study assessed the effects of an aqueous extract of Acanthopanax koreanum root (AE) and of AE following fermentation by lactic acid bacteria (Lactobacillus plantarum and Bifidobacterium bifidum) (AEF) on human skin fibroblast HS68 cells exposed to ultraviolet B (UVB) irradiation and oxidative stress. AEF effectively antagonized the senescence-associated β-galactosidase staining and upregulation of p53 and p21Cip1/WAF1 induced by UVB or H2O2 treatment in HS68 cells. It also exhibited excellent antioxidant activities in radical scavenging assays and reduced the intracellular level of reactive oxygen species induced by UVB or H2O2 treatment. The antioxidant and antisenescent activities of AEF were greater than those of nonfermented A. koreanum extract. AEF significantly repressed the UVB- or H2O2-induced activities of matrix metalloproteinase (MMP)-1 and -3, overexpression of MMP-1, and nuclear factor κB (NF-κB) activation. This repression of NF-κB activation and MMP-1 overexpression was attenuated by a mitogen-activated protein kinase activator, suggesting that this AEF activity was dependent on this signaling pathway. Taken together, these data indicated that AEF-mediated antioxidant and anti-photoaging activities may produce anti-wrinkle effects on human skin.