• Title/Summary/Keyword: p38kinase

Search Result 644, Processing Time 0.028 seconds

Inhibitory Action of the Natural Product AP1700 on the Withdrawal Syndrome of Nalbuphine

  • Kang, Jong-Seok;Lee, Hun-Kyu;Kim, Dong-Hyun;Yoo, Hwan-Soo;Jang, So-Yong;Oh, Sei-Kwan
    • Biomolecules & Therapeutics
    • /
    • v.13 no.1
    • /
    • pp.13-19
    • /
    • 2005
  • The study was undertaken to determine the antagonism of the AP1700 on the development of nalbuphine-induced tolerance and physical dependence. AP1700 is an oriental drug preparationcomposed of 5 natural products and is known to have antinarcotic action with an oral dose of 250 mg/kg in rats. AP1700 significantly inhibits the development of antinarcotic action with an oral dose of 250 mg/kg in rats. AP1700 significantly inhibits the development of nalbuphine-induced physical dependence but does not the tolerance. Mitogen-activated protein kinase, which include extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) play critical roles in cell growth and survival and drug abuse. The level of pCREB was elevated in the hippocampus by the chronic treatment with nalbuphine, however, the elevation of pCREB was not inhibited by the AP1700 co-treatment. Interestingly, the level of pERK was decreased in the co-treatment with nalbuphine and AP1700 on the cortex and striatum. However, the level of nNOS and NR1 was not modulated by the treatment with nalbuphine or AP1700 on the cortex, hippocampus and striatum in the rat brain. These results suggest that the AP1700 could be used to ameliorate the nalbuphine withdrawal symptoms.

Lisophosphatidic Acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Kwon, Sun-Bang;Park, Eun-Sang;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1055-1060
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we found that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. However, the specific inhibition of the ERK or JNK pathways by PD98059 or D-JNKI1, respectively, did not restore the antiproliferative effect. We next examined changes in the expression of cell cycle related proteins. LPA decreased cyclin $D_1 and cyclin D_2$ levels but increased $p21^{WAF1/CIP1}$ (p21) and $p27^{KIP1}$ (p27) levels, which are known inhibitors of cyclin-dependent kinase. Flow cytometric analysis showed the inhibition of DNA synthesis by a reduction in the S phase and an increase in the $G_0/G_1$ phase of the cell cycle. Our results suggest that LPA induces cell cycle arrest by regulating the expressions of cell cycle related proteins.

House Dust Mite Allergen Inhibits Constitutive Neutrophil Apoptosis by Cytokine Secretion via PAR2/PKCδ/p38 MAPK Pathway in Allergic Lymphocytes (알레르기 림프구에서 집먼지진드기 알러젠의 PAR2/PKCδ/p38 MAPK 경로를 통한 사이토카인 증가는 호중구의 세포고사를 억제시킨다)

  • Lee, Na Rae;Lee, Ji-Sook;Kim, In Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.3
    • /
    • pp.188-195
    • /
    • 2016
  • Neutrophils and lymphocytes are essential inflammatory cells in the pathogenesis of allergy. In this study, we evaluated the role of house dust mite (HDM) in the interaction between allergic lymphocytes and neutrophils. The extract of Dermatophagoides pteronissinus (DP) showed a stronger anti-apoptotic impact on neutrophil apoptosis in the coculture of allergic neutrophils with allergic lymphocytes when compared with that in allergic neutrophils alone. DP increased IL-6, IL-8, MCP-1, and GM-CSF in allergic lymphocytes, and the increased cytokines were inhibited by rottlerin-an inhibitor of the protein kinase C (PKC) ${\delta}$, as well as by SB202190-a p38 MAPK inhibitor. DP activated p38 MAPK in a time-dependent manner. The activation of p38 MAPK was suppressed by PAR2i, which is a protease-activated receptor (PAR) 2 inhibitor, and rottlerin. Both aprotinin-a serine protease inhibitor-and E64-a cysteine protease inhibitor-were not effective on cytokine secretion of lymphocytes. These results, despite increased cytokines in allergic lymphocytes via DP, did not show any differences between asthma and allergic rhinitis. Molecules, including cytokines, released by DP in lymphocytes inhibited the migration of neutrophils. This finding may further elucidate the pathogenic mechanism of allergic diseases due to HDM.

Role of p38 MAPK in the Regulation of Apoptosis Signaling Induced by TNF-α in Differentiated PC12 Cells

  • Park, Jung-Gyu;Yuk, Youn-Jung;Rhim, Hye-When;Yi, Seh-Yoon;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.267-272
    • /
    • 2002
  • TNF-$\alpha$ elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-$\alpha$ induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-$\alpha$. TNF-$\alpha$ initiates various signal transduction pathways leading to the activation of the caspase family, NF-${\kappa}B$, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-$\alpha$ receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-$\alpha$. This implies that the induction of anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-$\alpha$. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-$\alpha$ in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-$\alpha$ slowly increased and lasted several hours in the PC12 cell and DRG neuron. This specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-$\alpha$ in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in resoonse to TNF-$\alpha$ in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.

HMGB1 increases RAGE expression in vascular smooth muscle cells via ERK and p-38 MAPK-dependent pathways

  • Jang, Eun Jeong;Kim, Heejeong;Baek, Seung Eun;Jeon, Eun Yeong;Kim, Ji Won;Kim, Ju Yeon;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.389-396
    • /
    • 2022
  • The increased expression of receptors for advanced glycation end-product (RAGE) is known as a key player in the progression of vascular remodeling. However, the precise signal pathways regulating RAGE expression in vascular smooth muscle cells (VSMCs) in the injured vasculatures are unclear. Given the importance of mitogen-activated protein kinase (MAPK) signaling in cell proliferation, we investigated the importance of MAPK signaling in high-mobility group box 1 (HMGB1)-induced RAGE expression in VSMCs. In HMGB1 (100 ng/ml)-stimulated human VSMCs, the expression of RAGE mRNA and protein was increased in association with an increase in AGE-induced VSMC proliferation. The HMGB1-induced RAGE expression was attenuated in cells pretreated with inhibitors for ERK (PD98059, 10 μM) and p38 MAPK (SB203580, 10 μM) as well as in cells deficient in ERK and p38 MAPK using siRNAs, but not in cells deficient of JNK signaling. In cells stimulated with HMGB1, the phosphorylation of ERK, JNK, and p38 MAPK was increased. This increase in ERK and p38 MAPK phosphorylation was inhibited by p38 MAPK and ERK inhibitors, respectively, but not by JNK inhibitor. Moreover, AGE-induced VSMC proliferation in HMGB1-stimulated cells was attenuated in cells treated with ERK and p38 MAPK inhibitors. Taken together, our results indicate that ERK and p38 MAPK signaling are involved in RAGE expression in HMGB1-stimulated VSMCs. Thus, the ERK/p38 MAPK-RAGE signaling axis in VSMCs was suggested as a potential therapeutic target for vascular remodeling in the injured vasculatures.

Involvement of Src Family Tyrosine Kinase in Apoptosis of Human Neutrophils Induced by Protozoan Parasite Entamoeba histolytica

  • Sim, Seo-Bo;Yu, Jae-Ran;Lee, Young-Ah;Shin, Myeong-Heon
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.4
    • /
    • pp.285-290
    • /
    • 2010
  • Tyrosine kinases are one of the most important regulators for intracellular signal transduction related to inflammatory responses. However, there are no reports describing the effects of tyrosine kinases on neutrophil apoptosis induced by Entamoeba histolytica, In this study, isolated human neutrophils from peripheral blood were incubated with live trophozoites in the presence or absence of tyrosine kinase inhibitors. Entamoeba-induced receptor shedding of CD16 and PS externalization in neutrophils were inhibited by pre-incubation of neutrophils with the broad-spectrum tyrosine kinase inhibitor genistein or the Src family kinase inhibitor PP2. Entamoeba-induced ROS production was also inhibited by genistein or PP2, Moreover, genistein and PP2 blocked the phosphorylation of ERK and p38 MAPK in neutrophils induced by E. histolytica. These results suggest that Src tyrosine kinases may participate in the signaling event for ROS-dependent activation of MAPKs during neutrophil apoptosis induced by E. histolytica.

Pathophysiological Roles of ASK1-MAP Kinase Signaling Pathways

  • Nagai, Hiroaki;Noguchi, Takuya;Takeda, Kohsuke;Ichijo, Hidenori
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Apoptosis signal-regulating kinase 1 (ASK1) is a mitogenactivated protein kinase (MAPK) kinase kinase that activates JNK and p38 kinases. ASK1 is activated by various stresses, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, lipopolysaccharide (LPS) and calcium influx which are thought to be responsible for the pathogenesis or exacerbations of various human diseases. Recent studies revealed the involvement of ASK1 in ROS- or ER stressrelated diseases, suggesting that ASK1 may be a potential therapeutic target of various human diseases. In this review, we focus on the current findings for the relationship between pathogenesis and ASK1-MAPK pathways.

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

Immunostimulatory Effect of Ovomucin Hydrolysates by Pancreatin in RAW 264.7 Macrophages via Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway

  • Jin-Hong Jang;Ji-Eun Lee;Kee-Tae Kim;Dong Uk Ahn;Hyun-Dong Paik
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.885-898
    • /
    • 2024
  • Ovomucin (OM), which has insoluble fractions is a viscous glycoprotein, found in egg albumin. Enzymatic hydrolysates of OM have water solubility and bioactive properties. This study investigated that the immunostimulatory effects of OM hydrolysates (OMHs) obtained by using various proteolytic enzymes (Alcalase®, bromelain, α-chymotrypsin, Neutrase®, pancreatin, papain, Protamax®, and trypsin) in RAW 264.7 cells. The results showed that OMH prepared with pancreatin (OMPA) produced the highest levels of nitrite oxide in RAW 264.7 cells, through upregulation of inducible nitric oxide synthase mRNA expression. The production of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 were increased with the cytokines mRNA expression. The effect of OMPA on mitogen-activated protein kinase signaling pathway was increased the phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in a concentration-dependent manner. Therefore, OMPA could be used as a potential immune-stimulating agent in the functional food industry.

Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

  • Lu, Yue;Jeong, Yong-Tae;Li, Xian;Kim, Mi Jin;Park, Pil-Hoon;Hwang, Seung-Lark;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.435-441
    • /
    • 2013
  • Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-${\kappa}B$ p65 and its DNA-binding activity by reducing the phosphorylation and degradation of $I{\kappa}B{\alpha}$ and the phosphorylation of $I{\kappa}B$ kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-${\kappa}B$ activation and of the MAPK pathway.