• Title/Summary/Keyword: p38 MAPK pathway

Search Result 256, Processing Time 0.025 seconds

miR-30a-5p Augments the Anti-inflammatory Effects of Dexmedetomidine in LPS-induced BV2 Cells (LPS로 유도된 BV2 세포에서 Dexmetomidine이 갖는 항염증효과에 대한 miR-30a-5p의 시너지 효과)

  • Kim, Ji-Eun;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.201-208
    • /
    • 2022
  • Neuroinflammation is defined as a neurological inflammation within the brain and the spinal cord. In neuroinflammation, microglia are the tissue-resident macrophages of the central nervous system, which act as the first line of defense against harmful pathogens. Dexmedetomidine (Dex) has an anti-inflammatory effect in many neurological conditions. Additionally, the microRNA-30a-5p (miR-30a-5p) mimic has been proven to be effective in macrophages in inflammatory conditions. This study aimed to investigate the synergistic anti-inflammatory effects of both miR-30a-5p and Dex in lipopolysaccharide (LPS)-induced BV2 cells. This study showed that miR-30a-5p and Dex decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation in LPS-induced BV2 cells. MiR-30a-5p and Dex alleviated tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), LPS-induced phosphorylation c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (ERK) and p38. Also, the expression of the NOD-like receptor pyrin domain containing 3 inflammasome (NLRP3), cleaved caspase-1, and ASC was inhibited. Furthermore, LPS-stimulated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression were attenuated by Dex and miR-30a-5p. Our results indicate that a combination of Dex and miR-30a-5p, attenuates NF-κB activation, the mitogen-activated protein kinase (MAPK) signaling pathway, and inflammatory mediators involved in LPS-induced inflammation and inhibits the activation of the NLRP3 inflammasome in LPS-activated BV2 cells.

Clostridium difficile Toxin A Inhibits Wnt Signaling Pathway in Gut Epithelial Cells (대장상피세포 속 Wnt 신호 경로에 대한 C. difficile 톡신A의 영향)

  • Yoon, I Na;Kim, Ho
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1016-1021
    • /
    • 2018
  • Clostridium difficile toxin A causes pseudomembranous colitis. The pathogenesis of toxin A-induced colonic inflammation includes toxin A-dependent epithelial cell apoptosis, resulting in the loss of barrier function provided by epithelial cells against luminal pathogens. Toxin A-dependent epithelial cell apoptosis has been linked to toxin A-induced production of reaction oxygen species and subsequent p38MAPK activation; $p21^{CIP1/WAF1}$ upregulation-dependent cell cycle arrest; cytoskeletal disaggregation; and/or the induction of Fas ligand on epithelial cells. However, the molecular mechanisms underlying toxin A-induced apoptosis remain poorly understood. This study tested whether toxin A could block the Wnt signaling pathway, which is involved in gut epithelial cell proliferation, differentiation and antiapoptotic progression. Toxin A treatment of nontransformed human colonocytes (NCM460) rapidly reduced ${\beta}$-catenin protein, an essential component of the Wnt signaling pathway. Exposure of mouse ileum to toxin A also significantly reduced ${\beta}$-catenin protein levels. MG132 inhibition of proteasome-dependent protein degradation resulted in the recovery of toxin A-mediated reduction of ${\beta}$-catenin, indicating that toxin A may activate intracellular processes, such as $GSK3{\beta}$, to promote degradation of ${\beta}$-catenin. Immunoblot analysis showed that toxin A increased active phosphorylation of $GSK3{\beta}$. Because the Wnt signaling pathway is essential for gut epithelial cell proliferation and anti-apoptotic processes, our results suggest that toxin A-mediated inhibition of the Wnt signaling pathway may be required for maximal toxin A-induced apoptosis of gut epithelial cells.

Mechanisms of Suppression of Matrix Metalloproteinases in UVB-Irradiated HaCaT Keratinocytes of Colored Rice Varieties (UVB에 조사된 HaCaT Keratinocytes에서의 유색미에 의한 Matrix Metalloproteinases 발현억제 메커니즘)

  • Choi, Eun-Young;Lee, Jae-Bong;Kim, Do-Hoon;Kwon, Yong-Sham;Cheon, Jung-Yoon;Lee, Jin-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.562-571
    • /
    • 2017
  • In this study, we investigated the anti-oxidant activities [electron-donating ability (EDA), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, and reactive oxygen species (ROS) inhibitory activity], anti-wrinkle activities [collagenase inhibitory activity, suppression and/or phosphorylation of matrix metalloproteinases (MMPs), and mitogen-activated protein (MAP) kinase activity], and mRNA expression levels using reverse transcription-polymerase chain reaction (RT-PCR) assay in ultraviolet (UV) B ray ($50mJ/cm^2$)-irradiated human keratinocyte HaCaT cells. Josaengheugchal, Sinneungheugchal (SE), Shintoheug rice, Heugjinju rice, and Heugseol (HE) among colored rice varieties were reported to have excellent antioxidant properties. In the EDA and ABTS radical scavenging assays, extracts of the five colored rice varieties had scavenging activities of 72% at concentrations higher $50{\mu}g/mL$. In the collagenase inhibition assay, ethanol extracts of the five colored rice varieties showed high inhibitory effects of about 60% at concentrations higher $25{\mu}g/mL$. In the ROS inhibition assay, ethanol extracts of HE and SE showed very excellent inhibition efficacies at all concentrations. We determined molecular biological mechanisms of MMPs (MMP-1, -3, -8, and -13) and mitogen-activated protein kinase (MAPK) with HE, and the results show that HE suppressed expression of MMPs and phosphorylation of MAPK and increased expression of pro-collagen type I in UVB-irradiated cells. It was also confirmed by RT-PCR that HE reduced expression of MMPs mRNA. Therefore, these results suggest that HE has anti-wrinkle and collagen production effects and may be used as a material in the development of functional food and cosmetic industries.

The Effect of Aralia Cordata Thunb and Cimicifuga Heracleifolia on Cartilage Protection by the Regulation of Metabolism in Human Osteoarthric Chondrocytes (퇴행성 관절염에 대한 독활.승마 복합처방의 대사조절을 통한 연골보호 효과)

  • Shin, Ye-Ji;Beak, Yong-Hyeon;Park, Dong-Suk;Kim, Jae-Kyu;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.27 no.4
    • /
    • pp.39-53
    • /
    • 2010
  • 목적 : 퇴행성 관절염은 염증성 사이토카인인 IL-$1\beta$에 의해 연골관절이 파괴되고 이로 인해 염증성 사이토카인이 더욱 증가하는 질환이다. 퇴행성 관절염을 치료하기 위해서는 연골 파괴를 가속화시키는 catabolic cytokines의 활성을 줄이고, 성장인자인 anabolic factor의 활성을 증가시는 연골 보호 작용이 있어야 한다. 본 연구에서는 독활 승마 처방(OAH19T)이 catabolic/anabolic 대사 조절에 어떤 영향을 미치는지와 그 신호 전달 기전에 대해 연구하였다. 또한 OAH19T를 구성하는 단미재 및 임상에서 사용되는 COX-2 inhibitor인 Celebrex(CEL)와 효능을 비교 실험하였다. 방법 : 배양된 세포에 IL-$1\beta$로 자극한 후 (1) glycosaminoglycan(GAG)의 분해 억제 정도, (2) OAH19T와 CEL에 대하여 MMP-1과 MMP-3의 유전자 발현 및 활성 억제, (3) Aggrecan 및 Aggrecanases의 유전자 발현 및 활성 억제, (4) OAH19T의 growth factor의 조절 능력, (5) MAPK pathway 등을 RT-PCR(reverse transcriptase-polymerase chain reaction), ELISA(Enzyme-linked immunosorbent assay), western blot, viability 측정을 통해 검증했다. 결과 : 사람 관절 세포에서 (1) 독활 승마 각각의 단미재, 임상에서 사용중인 셀레콕시브(CEL), 조인스보다 실험 약물(OAH19T)이 저농도에서 GAG 분해 억제 효과가 우수하였고, 부탄올로 분획한 OAH19B와는 동등한 효과를 보였다. (2) OAH19T는 IL-$1\beta$에 의하여 활성화된 MMP-1과 MMP-3의 발현을 모두 억제하였으나, CEL은 MMP-1의 발현은 억제하였으나 MMP-3의 발현은 억제하지 못하였다. (3) OAH19T는 IL-$1\beta$에 의하여 손상된 Aggrecan을 회복시켰으며 이는 활성화된 Aggrecanase-1과 Aggrecanase-2를 억제시킴으로써 나타난 결과이다. 그러나 CEL의 경우, 손상된 Aggrecan을 회복시키지 못하였다. (4) 배양된 세포는 IL-$1\beta$에 의하여 TGF-$\beta$II및 TGF-$\beta$ receptor II의 발현이 억제되었으나, OAH19T는 TGF-$\beta$II및 TGF-$\beta$ receptor II의 발현을 회복시켜 OAH19T가 anabolic한 조절능력이 있음을 시사한다. 그러나 CEL의 경우 growth factor에 대한 조절 능력이 없었다. (5) 대사 조절 작용에 대한 기전으로서 MAPK pathway에 대해서 연구한 결과 IL-$1\beta$에 의하여 유도된 pERK, pp38 kinase의 활성은 억제하였고, pJNK의 활성은 변하지 않았다. 또한 OAH19T는 연골 세포에 독성이 없었으며 IL-$1\beta$에 의해 유도된 세포 증식만을 억제시켰다. 이 결과로, OAH19T가 OA chondrocyte의 탈분화 및 세포 고사를 억제하여 연골보호 및 회복 효과가 있음을 알 수 있었다. 결론 : OAH19T는 이를 구성하는 단미재 및 CEL보다 연골보호 효과가 월등하였고, 이러한 연골보호 효과는 catabolic cytokines/growth factors의 균형으로 대사조절을 통해 연골세포의 탈분화 및 세포 고사를 억제하여 연골보호 및 회복 효과가 있음을 알 수 있었다.

Production of PMA-induced MMP-2 and MMP-9 in the HT-1080 Fibrosarcoma Cell Line is Inhibited by Corydalis heterocarpa via the MAPK-related Pathway (PMA로 자극된 HT-1080 세포에서 염주괴불주머니 추출물의 MAPK 경로를 통한 MMP-2, MMP-9 발현 억제 효과)

  • Yu, Ga Hyun;Karadeniz, Fatih;Oh, Jung Hwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.51-55
    • /
    • 2022
  • Matrix metalloproteinase (MMP) enzymes are responsible for the degradation and formation of the extracellular matrix (ECM), and overproduction of MMPs is observed in several diseases, such as cancer and asthma, that progress with metastatic characteristics. Natural products, especially phytochemicals, have been an important source of MMP inhibitors with reduced side effects. Although the majority of phytochemicals inhibit the enzymatic activity of MMPs, some suppress MMP production. In this context, the current study evaluated the potential of Corydalis heterocarpa, a halophyte with reported bioactivities, to inhibit MMP expression in PMA-stimulated HT-1080 cells. A crude C. heterocarpa extract was shown to decrease the mRNA and protein expression of MMP-2 and MMP-9 while increasing the endogenous MMP inhibitors TIMP-1 and TIMP-2 which regulate MMP expression in healthy tissues. In addition, our results show that the inhibitory effects of C. heterocarpa might occur through suppression of the phosphorylation of MAPK signaling, the upstream activator of MMP overexpression. In conclusion, C. heterocarpa is a potential source of antimetastatic compounds that might serve as lead molecules to develop novel MMP inhibitors.

Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways (HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도)

  • Hwang, Ju Yeong;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.984-992
    • /
    • 2015
  • Sanguinarine is a benzophenanthridine alkaloid originally isolated from the roots of Sanguinaria canadensis. It has multiple biological activities (e.g., antioxidant and antiproliferative) and immune-enhancing potential. In this study, we explored the proapoptotic properties and modes of action of sanguinarine in human hepatocellular carcinoma HepG2 cells. Our results revealed that sanguinarine inhibited HepG2 cell growth and induced apoptosis in a dose-dependent manner. The induction of apoptosis by sanguinarine was associated with the up-regulation of Fas and Bax, the release of cytochrome c from the mitochondria to the cytosol, and the loss of the mitochondrial membrane potential. In addition, sanguinarine activated caspase-9 and -8, initiator caspases of the intrinsic and death extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Sanguinarine also triggered the generation of reactive oxygen species (ROS). The elimination of ROS by N-acetylcysteine reversed sanguinarine-induced apoptosis. Furthermore, sanguinarine induced the dephosphorylation of Akt and the phosphorylation of mitogen-activated protein kinases, including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38. The growth inhibition was enhanced by the combined treatment of sanguinarine with a phosphatidylinositol 3'-kinase (PI3K) inhibitor and an ERK inhibitor but not JNK and p38 inhibitors. Overall, our data indicate that the proapoptotic effects of sanguinarine in HepG2 cells depend on ROS production and the activation of both intrinsic and extrinsic signaling pathways, which is mediated by blocking PI3K/Akt and activating the ERK pathway. Thus, our data suggest that sanguinarine may be a natural compound with potential for use as an antitumor agent in liver cancer.

Activation of melanogenesis by non-thermal atmospheric pressure plasma

  • Ali, Anser;Kumar, Naresh;Kumar, Ajeet;Rhee, Prof. Myungchull;Lee, SeungHyun;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.211.1-211.1
    • /
    • 2016
  • Several reports have demonstrated the wide range of nonthermal plasma applications in biomedical field including cancers, diabetics, wound healing and cosmetics. Recently, it has been shown that plasma is able to modulate the p38 MAPK and JUN level in cells which has a crucial role in melanin synthesis and skin pigmentation. Therefore we investigated the effect of plasma on melanogenesis in-vitro using melanoma (B16F10) cells and in-vivo using mouse and zebra fish. To investigate the mechanism of plasma action, plasma device characteristics were measured, reactive species inside and outside the cells were detected, and western blot was performed to find the signaling pathway involved in melanin activation in-vitro and in-vivo. This is the first report presenting the role of nonthermal plasma for melanogenesis which provides a new perspective of plasma in the field of dermatology.

  • PDF

Inhibitory Effect of Semen Sinapis Albae on Immediate Hypersensitivity Reaction (백개자의 즉시형 과민 반응에 대한 억제 효과)

  • Lee, Kyou-Young;Hong, Chul-Hee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.27 no.4
    • /
    • pp.177-188
    • /
    • 2014
  • 목적 : 본 연구에서는 백개자 열수추출물이 활성화된 대식세포 및 사람 비만세포주, HMC-1에서 염증 반응을 효과적으로 억제하는가를 관찰하고자 하였다. 방법 : 대식세포에 여러 농도의 백개자 열수추출물을 가한 뒤 LPS로 염증을 유도하여 NO 생산, iNOS와 COX-2 단백질 발현을 관찰하였으며 HMC-1에도 여러 농도의 백개자 열수추출물을 가한 후 PMACI로 염증을 유도하여 histamine 분비와 NF-${\kappa}B$ 활성 및 $I{\kappa}B$-${\alpha}$의 인산화, MAPKs pathway에 대한 저해효과를 관찰하였다. 결과 : 백개자 열수추출물은 대식세포에서 LPS로 유도된 NO 생성 및 INOS, COX-2 단백질 발현을 농도 의존적으로 저해하였으며 HMC-1에서 PMACI로 유도된 histamine의 분비와 p38 MAPK, ERK, JNK의 인산화 반응 및 $I{\kappa}B$-${\alpha}$의 인산화와 NF-${\kappa}B$의 활성을 저해하였다. 결론 : 백개자 열수추출물은 대식세포 및 비만세포의 활성을 저해함으로써 알레르기 질환의 치료에 사용될 잠재성이 크다고 사료된다.

Effect of Differential Thermal Drying Conditions on the Immunomodulatory Function of Ginger

  • Lee, Ji Su;Kim, Bomi;Kim, Jae Hwan;Jeong, Minju;Lim, Seokwon;Byun, Sanguine
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1053-1060
    • /
    • 2019
  • Thermal drying is a common process used in the food industry for the modification of agricultural products. However, while various studies have investigated the alteration in physiochemical properties and chemical composition after drying, research focusing on the relationship between different dehydration conditions and bioactivity is scarce. In the current study, we prepared dried ginger under nine different conditions by varying the processing time and temperature and compared their immunomodulatory effects. Interestingly, depending on the drying condition, there were significant differences in the immunestimulating activity of the dried ginger samples. Gingers processed at $50^{\circ}C$ 1h displayed the strongest activation of macrophages measured by $TNF-{\alpha}$ and IL-6 levels, whereas, freezedried or $70^{\circ}C$- and $90^{\circ}C$-dried ginger showed little effect. Similar results were recapitulated in primary bone marrow-derived macrophages, further confirming that different dehydration conditions can cause significant differences in the immune-stimulating activity of ginger. Induction of ERK, p38, and JNK signaling was found to be the major underlying molecular mechanism responsible for the immunomodulatory effect of ginger. These results highlight the potential to improve the bioactivity of functional foods by selectively controlling processing conditions.

RK-270D and E, Oxindole Derivatives from Streptomyces sp. with Anti-Angiogenic Activity

  • Jang, Jun-Pil;Jang, Mina;Nogawa, Toshihiko;Takahashi, Shunji;Osada, Hiroyuki;Ahn, Jong Seog;Ko, Sung-Kyun;Jang, Jae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.302-306
    • /
    • 2022
  • A chemical investigation of a culture extract from Streptomyces sp. RK85-270 led to the isolation and characterization of two new oxindoles, RK-270D (1) and E (2). The structures of 1 and 2 were determined by analyzing spectroscopic and spectrometric data from 1D and 2D NMR and High-resolution electrospray ionization mass spectrometry (HRESIMS) experiments. Compound 1 exhibited anti-angiogenic activities against human umbilical vein endothelial cells (HUVECs) without cytotoxicity. Results of Western blot analysis revealed that 1 inhibits VEGF-induced angiogenesis in the HUVECs via VEGFR2/ p38 MAPK-mediated pathway.